Gram-Negative Microflora Dysbiosis Facilitates Tumor Progression and Immune Evasion by Activating the CCL3/CCL5-CCR1-MAPK-PD-L1 Pathway in Esophageal Squamous Cell Carcinoma

革兰氏阴性菌群失调通过激活食管鳞状细胞癌中的 CCL3/CCL5-CCR1-MAPK-PD-L1 通路促进肿瘤进展和免疫逃避

阅读:3
作者:Huiqin Yang #, Jiahao Cai #, Xiaolong Huang #, Cheng Zhan, Chunlai Lu, Jie Gu, Teng Ma, Hongyu Zhang, Tao Cheng, Fengkai Xu, Di Ge

Abstract

Gram-negative (G-) microflora dysbiosis occurs in multiple digestive tumors and is found to be the dominant microflora in the esophageal squamous cell carcinoma (ESCC) microenvironment. The continuous stimulation of G- bacterium metabolites may cause tumorigenesis and reshape the microimmune environment in ESCC. However, the mechanism of G- bacilli causing immune evasion in ESCC remains underexplored. We identified CC chemokine receptor 1 (CCR1) as a tumor-indicating gene in ESCC. Interestingly, expression levels of CCR1 and PD-L1 were mutually upregulated after G- bacilli metabolite lipopolysaccharide stimulation. First, we found that CCR1 high expression levels were associated with poor overall survival in ESCC. Importantly, we found that high levels of CCR1 expression upregulated PD-L1 expression by activating MAPK phosphorylation in ESCC and induced tumor malignant behavior. Finally, we found that T-cell exhaustion and cytotoxicity suppression were associated with CCR1 expression in ESCC, which were decreased after CCR1 inhibiting. Our work identifies CCR1 as a potential immune check point regulator of PD-L1 and may cause T-cell exhaustion and cytotoxicity suppression in ESCC microenvironment and highlights the potential value of CCR1 as a therapeutic target of immunotherapy. Implications: The esophageal microbial environment and its metabolites significantly affect the outcome of immunotherapy for ESCC.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。