The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug

活性氧的产生是两性霉素 B 对抗致病酵母的普遍作用机制,并有助于该药物的杀菌作用

阅读:3
作者:Ana Cecilia Mesa-Arango, Nuria Trevijano-Contador, Elvira Román, Ruth Sánchez-Fresneda, Celia Casas, Enrique Herrero, Juan Carlos Argüelles, Jesús Pla, Manuel Cuenca-Estrella, Oscar Zaragoza

Abstract

Amphotericin B (AMB) is an antifungal drug that binds to ergosterol and forms pores at the cell membrane, causing the loss of ions. In addition, AMB induces the accumulation of reactive oxygen species (ROS), and although these molecules have multiple deleterious effects on fungal cells, their specific role in the action mechanism of AMB remains unknown. In this work, we studied the role of ROS in the action mechanism of AMB. We determined the intracellular induction of ROS in 44 isolates of different pathogenic yeast species (Candida albicans, Candida parapsilosis, Candida glabrata, Candida tropicalis, Candida krusei, Cryptococcus neoformans, and Cryptococcus gattii). We also characterized the production of ROS in AMB-resistant isolates. We found that AMB induces the formation of ROS in all the species tested. The inhibition of the mitochondrial respiratory chain by rotenone blocked the induction of ROS by AMB and provided protection from the killing action of the antifungal. Moreover, this phenomenon was absent in strains that displayed resistance to AMB. These strains showed an alteration in the respiration rate and mitochondrial membrane potential and also had higher catalase activity than that of the AMB-susceptible strains. Consistently, AMB failed to induce protein carbonylation in the resistant strains. Our data demonstrate that the production of ROS by AMB is a universal and important action mechanism that is correlated with the fungicidal effect and might explain the low rate of resistance to the molecule. Finally, these data provide an opportunity to design new strategies to improve the efficacy of this antifungal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。