Quantitative Chromatin Protein Dynamics During Replication Origin Firing in Human Cells

人类细胞复制起点启动过程中染色质蛋白的定量动力学

阅读:39
作者:Sampath Amitash Gadi, Ivo Alexander Hendriks, Christian Friberg Nielsen, Petya Popova, Ian D Hickson, Michael Lund Nielsen, Luis Toledo

Abstract

Accurate genome duplication requires a tightly regulated DNA replication program that relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyze protein recruitment to the chromatin during induced origin firing in human cells. Using a specific inhibitor against CHK1 kinase, we induced a synchronized wave of dormant origin firing (DOF) and assessed the S phase chromatin proteome at different time points. We provide time-resolved loading dynamics of 3269 proteins, including the core replication machinery and origin firing factors. This dataset accurately represents known temporal dynamics of proteins on the chromatin during the activation of replication forks and the subsequent DNA damage due to the hyperactivation of excessive replication forks. Finally, we used our dataset to identify the condensin II subunit NCAPH2 as a novel factor required for efficient origin firing and replication. Overall, we provide a comprehensive resource to interrogate the protein recruitment dynamics of replication origin firing events in human cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。