Quantitative Chromatin Protein Dynamics During Replication Origin Firing in Human Cells

人类细胞复制起点启动过程中染色质蛋白的定量动力学

阅读:3
作者:Sampath Amitash Gadi, Ivo Alexander Hendriks, Christian Friberg Nielsen, Petya Popova, Ian D Hickson, Michael Lund Nielsen, Luis Toledo

Abstract

Accurate genome duplication requires a tightly regulated DNA replication program that relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyze protein recruitment to the chromatin during induced origin firing in human cells. Using a specific inhibitor against CHK1 kinase, we induced a synchronized wave of dormant origin firing (DOF) and assessed the S phase chromatin proteome at different time points. We provide time-resolved loading dynamics of 3269 proteins, including the core replication machinery and origin firing factors. This dataset accurately represents known temporal dynamics of proteins on the chromatin during the activation of replication forks and the subsequent DNA damage due to the hyperactivation of excessive replication forks. Finally, we used our dataset to identify the condensin II subunit NCAPH2 as a novel factor required for efficient origin firing and replication. Overall, we provide a comprehensive resource to interrogate the protein recruitment dynamics of replication origin firing events in human cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。