A novel mutation of DNA2 regulates neuronal cell membrane potential and epileptogenesis

DNA2 的新突变调节神经元细胞膜电位和癫痫发生

阅读:6
作者:Yuting Liu #, Haiyan Yang #, Siyi Gan, Lu He, Rongrong Zeng, Ting Xiao, Liwen Wu

Abstract

Mesial temporal lobe epilepsy (MTLE) is one of the most intractable epilepsies. Previously, we reported that mitochondrial DNA deletions were associated with epileptogenesis. While the underlying mechanism of mitochondrial DNA deletions during epileptogenesis remain unknown. In this study, a novel somatic mutation of DNA2 gene was identified in the hippocampal tissue of two MTLE patients carrying mitochondrial DNA deletions, and this mutation decreased the full-length expression of DNA2 protein significantly, aborting its normal functions. Then, we knocked down the DNA2 protein in zebrafish, and we demonstrated that zebrafish with DNA2 deficiency showed decreased expression of mitochondrial complex II-IV, and exhibited hallmarks of epileptic seizures, including abnormal development of the zebrafish and epileptiform discharge signals in brain, compared to the Cas9-control group. Moreover, our cell-based assays showed that DNA2 deletion resulted in accumulated mitochondrial DNA damage, abnormal oxidative phosphorylation and decreased ATP production in cells. Inadequate ATP generation in cells lead to declined Na+, K+-ATPase activity and change of cell membrane potential. Together, these disorders caused by DNA2 depletion increased cell apoptosis and inhibited the differentiation of SH-SY5Y into branched neuronal phenotype. In conclusion, DNA2 deficiency regulated the cell membrane potential via affecting ATP production by mitochondria and Na+, K+-ATPase activity, and also affected neuronal cell growth and differentiation. These disorders caused by DNA2 dysfunction are important causes of epilepsy. In summary, we are the first to report the pathogenic somatic mutation of DNA2 gene in the patients with MTLE disease, and we uncovered the mechanism of DNA2 regulating the epilepsy. This study provides new insight into the pathogenesis of epilepsy and underscore the value of DNA2 in epilepsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。