Changes in bone microarchitecture and biomechanical properties in the th3 thalassemia mouse are associated with decreased bone turnover and occur during the period of bone accrual

th3 地中海贫血小鼠的骨微结构和生物力学特性的变化与骨转换率降低有关,并且发生在骨质积累期间

阅读:5
作者:Maria G Vogiatzi, Jaime Tsay, Kostas Verdelis, Stefano Rivella, Robert W Grady, Stephen Doty, Patricia J Giardina, Adele L Boskey

Abstract

Osteoporosis and fractures occur frequently in patients with beta-thalassemias, a group of congenital hemolytic anemias characterized by decreased synthesis of the beta chain of hemoglobin. In this study, we determined the bone abnormalities of the th3 thalassemia mouse, generated by deletion of the mouse beta-chain genes. The heterozygous th3/+ mouse has moderate anemia and serves as a model of beta-thalassemia intermedia, which represents the mild thalassemia phenotype. The th3/th3 mouse has lethal anemia and is a model of beta-thalassemia major, which is characterized by life-threatening anemia requiring regular transfusions to sustain life. Compared to controls, (1) microCT of trabecular bone showed decreased bone volume fraction, number of trabeculae, and trabecular thickness in both th3/+ and th3/th3 (P < 0.05); (2) cortical bone analysis showed thinner cortices and increased marrow area in th3/+ (P < 0.05); (3) microCT abnormalities in th3/+ mice were present by 2 months and did not worsen with age; (4) histomorphometry was significant for decreased bone formation and resorption in both th3/+ and th3/th3, and expression of cathepsin K and osteocalcin from bone of both th3/+ and th3/th3 animals was reduced (P < 0.05); (5) biomechanics showed reduced maximum load, maximum moment, and structural stiffness in both th3/+ and th3/th3 (P < 0.01). In conclusion, the th3 mouse model of thalassemia manifests bone changes reminiscent of those in humans and can be used for further bone studies in thalassemia. Bone changes are associated with decreased bone turnover and develop early during the period of bone accrual.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。