Ceftaroline is active against heteroresistant methicillin-resistant Staphylococcus aureus clinical strains despite associated mutational mechanisms and intermediate levels of resistance

头孢洛林对异质耐药性耐甲氧西林金黄色葡萄球菌临床菌株具有活性,尽管存在相关的突变机制和中等程度的耐药性

阅读:5
作者:Regina Fernandez, Liliana I Paz, Roberto R Rosato, Adriana E Rosato

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is an important infectious human pathogen responsible for diseases ranging from skin and soft tissue infections to life-threatening endocarditis. β-Lactam resistance in MRSA involves acquisition of penicillin-binding protein 2a (PBP2a), a protein with low affinity for β-lactams that mediates cell wall assembly when the normal staphylococcal PBPs (PBP1 to -4) are blocked by these agents. Many MRSA strains display heterogeneous expression of resistance (HeR) against β-lactam antibiotics. The β-lactam-mediated homoresistant (HoR) phenotype is associated with both expression of the mecA gene and activation of the LexA-RecA-mediated SOS response, a regulatory network induced in response to DNA damage. Ceftaroline (CPT) is the only FDA-approved cephalosporin targeting PBP2a. We investigated the mechanistic basis of CPT activity against HeR-MRSA strains, including a set of strains displaying an intermediate level of resistance to CPT. Mechanistically, we found that 1 exposure of HeR-MRSA to subinhibitory concentrations of CPT selected for the HoR derivative activated the SOS response and increased mutagenesis. Importantly, CPT-selected HoR cells remained susceptible to CPT while still being resistant to most β-lactams, and 2-CPT activity in HeR-MRSA resided in an attenuated induction of mecA expression in comparison to other β-lactams. In addition, 3-CPT intermediate-resistant strains displayed a significant increase in CPT-induced mecA expression accompanied by mutations in PBP2, which together may interfere with the complete repression by CPT of both PBP2a and PBP2a-PBP2 interactions and thus be a determining factor in the low level of CPT resistance in the absence of mecA gene mutations. The present study provides mechanistic evidence that CPT represents an alternative therapeutic option for the treatment of heteroresistant MRSA strains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。