Elimination of Extracellular Adenosine Triphosphate for the Rapid Prediction of Quantitative Plate Counts in 24 h Time-Kill Studies against Carbapenem-Resistant Gram-Negative Bacteria

消除细胞外三磷酸腺苷,快速预测 24 小时抗卡巴培南革兰氏阴性细菌的菌落计数

阅读:5
作者:Yiying Cai, Jonathan J Ng, Hui Leck, Jocelyn Q Teo, Jia-Xuan Goh, Winnie Lee, Tse-Hsien Koh, Thuan-Tong Tan, Tze-Peng Lim, Andrea L Kwa

Abstract

Traditional in vitro time-kill studies (TKSs) require viable plating, which is tedious and time-consuming. We used ATP bioluminescence, with the removal of extracellular ATP (EC-ATP), as a surrogate for viable plating in TKSs against carbapenem-resistant Gram-negative bacteria (CR-GNB). Twenty-four-hour TKSs were conducted using eight clinical CR-GNB (two Escherichia coli, two Klebsiella spp., two Acinetobacter baumannii, two Pseudomonas aeruginosa) with multiple single and two-antibiotic combinations. ATP bioluminescence and viable counts were determined at each timepoint (0, 2, 4, 8, 24 h), with and without apyrase treatment. Correlation between ATP bioluminescence and viable counts was determined for apyrase-treated and non-apyrase-treated samples. Receiver operator characteristic curves were plotted to determine the optimal luminescence threshold to discriminate between inhibitory/non-inhibitory and bactericidal/non-bactericidal combinations, compared to viable counts. After treatment of bacteria with 2 U/mL apyrase for 15 min at 37 °C, correlation to viable counts was significantly higher compared to untreated samples (p < 0.01). Predictive accuracies of ATP bioluminescence were also significantly higher for apyrase-treated samples in distinguishing inhibitory (p < 0.01) and bactericidal (p = 0.03) combinations against CR-GNB compared to untreated samples, when all species were collectively analyzed. We found that ATP bioluminescence can potentially replace viable plating in TKS. Our assay also has applications in in vitro and in vivo infection models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。