Enhanced formation of 5-oxo-6,8,11,14-eicosatetraenoic acid by cancer cells in response to oxidative stress, docosahexaenoic acid and neutrophil-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid

癌细胞在氧化应激、二十二碳六烯酸和中性粒细胞衍生的 5-羟基-6,8,11,14-二十碳四烯酸反应中 5-氧代-6,8,11,14-二十碳四烯酸的形成增强

阅读:5
作者:Gail E Grant, Stephen Rubino, Sylvie Gravel, Xiaoping Wang, Pranav Patel, Joshua Rokach, William S Powell

Abstract

The 5-lipoxygenase (5-LO) product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), which is a potent chemoattractant for myeloid cells, is known to promote the survival of prostate cancer cells. In the present study, we found that PC3 prostate cancer cells and cell lines derived from breast (MCF7) and lung (A-427) cancers contain 5-hydroxyeicosanoid dehydrogenase (5-HEDH) activity and have the ability to synthesize 5-oxo-ETE from its precursor 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) when added as an exogenous substrate. H(2)O(2) strongly stimulated the synthesis of 5-oxo-ETE and induced dramatic increases in the levels of both glutathione disulfide and NADP(+). The effects of H(2)O(2) on 5-oxo-ETE and NADP(+) were blocked by N-ethylmaleimide (NEM), indicating that this effect was mediated by the glutathione reductase-dependent generation of NADP(+), the cofactor required by 5-HEDH. 5-Oxo-ETE synthesis was also stimulated by agents that have cytotoxic effects on tumor cells, including 4,7,10,13,16,19-docosahexaenoic acid, tamoxifen and MK-886. Because PC3 cells have only modest 5-LO activity compared with inflammatory cells, we investigated their ability to contribute to the transcellular biosynthesis of 5-oxo-ETE from neutrophil-derived 5-HETE. Stimulation of neutrophils with arachidonic acid and calcium ionophore in the presence of PC3 cells led to a large and selective increase in 5-oxo-ETE synthesis compared with controls in which PC3 cell 5-oxo-ETE synthesis was selectively blocked by pretreatment with NEM. The ability of prostate tumor cells to synthesize 5-oxo-ETE may contribute to tumor cell proliferation as well as the influx of inflammatory cells, which may further induce cell proliferation through the release of cytokines. 5-Oxo-ETE may be an attractive target in cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。