Exploratory Study of Gastrointestinal Redox Biomarkers in the Presymptomatic and Symptomatic Tg2576 Mouse Model of Familial Alzheimer's Disease: Phenotypic Correlates and Effects of Chronic Oral d-Galactose

家族性阿尔茨海默病症状前和症状性 Tg2576 小鼠模型中胃肠道氧化还原生物标志物的探索性研究:表型相关性和长期口服 d-半乳糖的影响

阅读:4
作者:Jan Homolak, Ana Babic Perhoc, Ana Knezovic, Jelena Osmanovic Barilar, Davor Virag, Melita Salkovic-Petrisic

Abstract

The gut might play an important role in the etiopathogenesis of Alzheimer's disease (AD) as gastrointestinal alterations often precede the development of neuropathological changes in the brain and correlate with disease progression in animal models. The gut has an immense capacity to generate free radicals whose role in the etiopathogenesis of AD is well-known; however, it remains to be clarified whether gastrointestinal redox homeostasis is associated with the development of AD. The aim was to (i) examine gastrointestinal redox homeostasis in the presymptomatic and symptomatic Tg2576 mouse model of AD; (ii) investigate the effects of oral d-galactose previously shown to alleviate cognitive deficits and metabolic changes in animal models of AD and reduce gastrointestinal oxidative stress; and (iii) investigate the association between gastrointestinal redox biomarkers and behavioral alterations in Tg2576 mice. In the presymptomatic stage, Tg2576 mice displayed an increased gastrointestinal electrophilic tone, characterized by higher lipid peroxidation and elevated Mn/Fe-SOD activity. In the symptomatic stage, these alterations are rectified, but the total antioxidant capacity is decreased. Chronic oral d-galactose increased the antioxidant capacity and reduced lipid peroxidation in the Tg2576 but had the opposite effects in the wild-type animals. The total antioxidant capacity of the gastrointestinal tract was associated with greater spatial memory. Gut redox homeostasis might be involved in the development and progression of AD pathophysiology and should be further explored in this context.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。