Comparing the performance of the optical glucose assay based on glucose binding protein with high-performance anion-exchange chromatography with pulsed electrochemical detection: efforts to design a low-cost point-of-care glucose sensor

基于葡萄糖结合蛋白的光学葡萄糖测定法与脉冲电化学检测的高效阴离子交换色谱法的性能比较:努力设计一种低成本的即时葡萄糖传感器

阅读:5
作者:Xudong Ge, Hung Lam, Swati J Modi, William R LaCourse, Govind Rao, Leah Tolosa

Background

The glucose binding protein (GBP) is one of many soluble binding proteins found in the periplasmic space of gram-negative bacteria. These proteins are responsible for chemotactic responses and active transport of chemical species across the membrane. Upon ligand binding, binding proteins undergo a large conformational change, which is the basis for converting these proteins into optical biosensors.

Conclusions

A glucose binding protein labeled with a polarity-sensitive probe can be used for measuring micromolar amounts of glucose. Using a lifetime-assisted ratiometric technique, a low-cost GBP-based micromolar glucose monitor could be built.

Methods

The GBP biosensor was prepared by attaching a polarity-sensitive fluorescent probe to a single cysteine mutation at a site on the protein that is allosterically responsive to glucose binding. The fluorescence response of the resulting sensor was validated against high-performance anion-exchange chromatography (HPAEC) with pulsed electrochemical detection. Finally, a simple fluorescence reader was built using a lifetime-assisted ratiometric technique.

Results

The GBP assay has a linear range of quantification of 0.100-2.00 microM and a sensitivity of 0.164 microM(-1) under the specified experimental conditions. The comparison between GBP and HPAEC readings for nine blind samples indicates that there is no statistical difference between the analytical results of the two methods at the 95% confidence level. Although the methods of fluorescence detection are based on different principles, the response of the homemade device to glucose concentrations was comparable to the response of the larger and more expensive tabletop fluorescence spectrophotometer. Conclusions: A glucose binding protein labeled with a polarity-sensitive probe can be used for measuring micromolar amounts of glucose. Using a lifetime-assisted ratiometric technique, a low-cost GBP-based micromolar glucose monitor could be built.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。