Discovery of Molecular Interactions of the Human Melanocortin-4 Receptor (hMC4R) Asp189 (D189) Amino Acid with the Endogenous G-Protein-Coupled Receptor (GPCR) Antagonist Agouti-Related Protein (AGRP) Provides Insights to AGRP's Inverse Agonist Pharmacology at the hMC4R

发现人类黑皮质素-4 受体 (hMC4R) Asp189 (D189) 氨基酸与内源性 G 蛋白偶联受体 (GPCR) 拮抗剂刺豚鼠相关蛋白 (AGRP) 的分子相互作用,为 AGRP 在 hMC4R 的反向激动剂药理学提供了见解

阅读:6
作者:Mark D Ericson, Erica M Haslach, Sathya M Schnell, Katie T Freeman, Zhimin M Xiang, Frederico P Portillo, Robert Speth, Sally A Litherland, Carrie Haskell-Luevano

Abstract

The melanocortin receptors (MCRs) are important for numerous biological pathways, including feeding behavior and energy homeostasis. In addition to endogenous peptide agonists, this receptor family has two naturally occurring endogenous antagonists, agouti and agouti-related protein (AGRP). At the melanocortin-4 receptor (MC4R), the AGRP ligand functions as an endogenous inverse agonist in the absence of agonist and as a competitive antagonist in the presence of agonist. At the melanocortin-3 receptor (MC3R), AGRP functions solely as a competitive antagonist in the presence of agonist. The molecular interactions that differentiate AGRP's inverse agonist activity at the MC4R have remained elusive until the findings reported herein. Upon the basis of homology molecular modeling approaches, we previously postulated a unique interaction between the D189 position of the hMC4R and Asn114 of AGRP. To further test this hypothesis, six D189 mutant hMC4Rs (D189A, D189E, D189N, D189Q, D189S, and D189K) were generated and pharmacologically characterized resulting in the discovery of differences in inverse agonist activity of AGRP and an 11 macrocyclic compound library. These data support the hypothesized interaction between the hMC4R D189 position and Asn114 residue of AGRP and define critical ligand-receptor molecular interactions responsible for the inverse agonist activity of AGRP at the hMC4R.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。