SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner

SRSF9 通过以 m6A 相关方式稳定 DSN1 mRNA 促进结直肠癌进展

阅读:10
作者:Xiaoyu Wang, Xiansheng Lu, Ping Wang, Qiaoyu Chen, Le Xiong, Minshan Tang, Chang Hong, Xiaowen Lin, Kaixi Shi, Li Liang, Jie Lin

Background

Serine/arginine-rich splicing factor 9 (SRSF9) is a classical RNA-binding protein that is essential for regulating gene expression programs through its interaction with target RNA. Whether SRSF9 plays an essential role in colorectal cancer (CRC) progression and can serve as a therapeutic target is largely unknown. Here, we highlight new findings on the role of SRSF9 in CRC progression and elucidate the underlying mechanism.

Conclusion

Overexpression of SRSF9 was associated with lymph node metastasis and Dukes stage in CRC. Knockdown of DSN1 eliminated the effects by SRSF9 overexpression in CRC. Our results indicated that SRSF9 functions as an m6A-binding protein (termed "reader") by enhancing the stability of DSN1 mRNA in m6A-related manner. Our study is the first to report that SRSF9-mediated m6A recognition has a crucial role in CRC progression, and highlights SRSF9 as a potential therapeutic target for CRC management.

Methods

CRC cell lines and clinical tissue samples were used. qRT-PCR, Western blotting, immunohistochemistry (IHC), gain- and loss-of-function assays, animal xenograft model studies, bioinformatic analysis, methylated single-stranded RNA affinity assays, gene-specific m6A quantitative qRT-PCR, dual-luciferase reporter assays and RNA stability assays were performed in this study.

Results

The expression level of SRSF9 was higher in CRC cell lines than that in an immortal human intestinal epithelial cell line. Overexpression of SRSF9 was positively associated with lymph node metastasis and Dukes stage. Functionally, SRSF9 promoted cell proliferation, migration and invasion in vitro and xenograft growth. The results of bioinformatic analysis indicated that DSN1 was the downstream target of SRSF9. In CRC cells and clinical tissue samples, the expression of SRSF9 was positively associated with the expression of DSN1. Knockdown of DSN1 partially inhibited the SRSF9-induced phenotype in CRC cells. Mechanistically, we further found that SRSF9 is an m6A-binding protein and that m6A modifications were enriched in DSN1 mRNA in CRC cells. Two m6A modification sites (chr20:36773619-36773620 and chr20:36773645-chr20:36773646) in the SRSF9-binding region (chr20:36773597-36773736) of DSN1 mRNA were identified. SRSF9 binds to DSN1 in an m6A motif- and dose-dependent manner. SRSF9 modulates the expression of DSN1 in CRC cells. Such expression regulation was largely impaired upon methyltransferase METTL3 knockdown. Moreover, knockdown of SRSF9 accelerated DSN1 mRNA turnover, while overexpression of SRSF9 stabilized DSN1 mRNA in CRC cells. Such stabilizing was also weakened upon METTL3 knockdown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。