RORγ regulates the NLRP3 inflammasome

RORγ 调节 NLRP3 炎症小体

阅读:5
作者:Cyrielle Billon, Meghan H Murray, Amer Avdagic, Thomas P Burris

Abstract

RAR-related orphan receptor γ (RORγ) is a nuclear receptor that plays an essential role in the development of T helper 17 (Th17) cells of the adaptive immune system. The NLRP3 inflammasome is a component of the innate immune system that processes interleukin (IL)-1β into a mature cytokine. Elevated activity of the NLRP3 inflammasome contributes to the progression of an array of inflammatory diseases. Bone marrow-derived macrophages (BMDMs) isolated from RORγ-null mice displayed reduced capacity to secrete IL-1β, and they also displayed a reduction in Nlrp3 and Il1b gene expression. Examination of the promoters of the Il1b and Nlrp3 genes revealed multiple putative ROR response elements (ROREs) that were occupied by RORγ. RORγ inverse agonists were effective inhibitors of the inflammasome. RORγ inverse agonists suppressed lipopolysaccharide (LPS)/ATP-stimulated IL-1β secretion and expression of Il1b and Nlrp3 in BMDMs. Additionally, the ability of the RORγ inverse agonists to suppress IL-1β secretion was lost in Nlrp3-null macrophages. The potential for targeting the NLRP3 inflammasome in vivo using RORγ inverse agonists was examined in two models: LPS-induced sepsis and fulminant hepatitis. Pharmacological inhibition of RORγ activity reduced plasma IL-1β as well as IL-1β production by peritoneal macrophages in a model of LPS-induced sepsis. Additionally, RORγ inverse agonists reduced mortality in an LPS/d-galactosamine-induced fulminant hepatitis mouse model. These results illustrate a major role for RORγ in regulation of innate immunity via modulation of NLRP3 inflammasome activity. Furthermore, these data suggest that inhibiting the NLRP3 inflammasome with RORγ inverse agonists may be an effective method to treat NLRP3-associated diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。