Early introduction of IL-10 weakens BCG revaccination's protection by suppressing CD4+Th1 cell responses

IL-10 的早期引入会抑制 CD4+Th1 细胞反应,从而削弱 BCG 疫苗再次接种的保护作用。

阅读:2
作者:Qing Lei # ,Hui Fu # ,Zongjie Yao # ,Zijie Zhou ,Yueqing Wang ,Xiaosong Lin ,Yin Yuan ,Qi Ouyang ,Xinyue Xu ,Jinge Cao ,Mengze Gan ,Xionglin Fan

Abstract

Background: The Bacillus Calmette-Guérin (BCG) vaccine, currently the sole authorized vaccine against tuberculosis (TB), demonstrates limited effectiveness in safeguarding adolescents and adults from active TB, even when administered as a booster with either BCG itself or heterologous vaccine candidates. To effectively control the persistent epidemic of adult TB, it is imperative to investigate the mechanisms responsible for the suboptimal efficacy of the BCG prime-boosting strategy against primary Mycobacterium tuberculosis (M.tb) infection. Methods: C57BL/6J mice were immunized with the BCG vaccine either once or twice, followed by analysis of lung tissue to assess changes in cytokine levels. Additionally, varying intervals between vaccinations and detection times were examined to study IL-10 expression across different organs. IL-10-expressing cells in the lungs, spleen, and lymph nodes were analyzed through FACS and intracellular cytokine staining (ICS). BCG-revaccinated IL-10-/- mutant mice were compared with wild-type mice to evaluate antigen-specific IgG antibody and T cell responses. Protection against M.tb aerosol challenge was evaluated in BCG-revaccinated mice, either untreated or treated with anti-IL-10R monoclonal antibody. Results: IL-10 was significantly upregulated in the lungs of BCG-revaccinated mice shortly after the booster immunization. IL-10 expression peaked in the lungs 3-6 weeks post-revaccination and was also detected in lymph nodes and spleen as early as 2 weeks following the booster dose, regardless of the intervals between the prime and booster vaccinations. The primary sources of IL-10 in these tissues were identified as macrophages and dendritic cells. Blocking IL-10 signaling in BCG-revaccinated mice-either by using IL-10-/- mutant mice or administering anti-IL-10R monoclonal antibody increased levels of antigen-specific IFN-γ+ or IL-2+ CD4+ T cells, enhanced central and effector memory CD4+ T cell responses, and provided better protection against aerosol infection with 300 CFUs of M.tb. Conclusion: Our findings are crucial for formulating effective immunization strategies related to the BCG vaccine and for developing efficacious adult TB vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。