Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase

受植物特异性 DYRK 激酶影响的衣藻突变体中淀粉和油的过度积累

阅读:5
作者:Miriam Schulz-Raffelt, Vincent Chochois, Pascaline Auroy, Stéphan Cuiné, Emmanuelle Billon, David Dauvillée, Yonghua Li-Beisson, Gilles Peltier

Background

Because of their high biomass productivity and their ability to accumulate high levels of energy-rich reserve compounds such as oils or starch, microalgae represent a promising feedstock for the production of biofuel. Accumulation of reserve compounds takes place when microalgae face adverse situations such as nutrient shortage, conditions which also provoke a stop in cell division, and down-regulation of photosynthesis. Despite growing interest in microalgal biofuels, little is known about molecular mechanisms controlling carbon reserve formation. In order to discover new regulatory mechanisms, and identify genes of interest to boost the potential of microalgae for biofuel production, we developed a forward genetic approach in the model microalga Chlamydomonas reinhardtii.

Conclusions

The DYRKP kinase is proposed to act as a negative regulator of the sink capacity of photosynthetic cells that integrates nutrient and energy signals. Inactivation of the kinase strongly boosts accumulation of reserve compounds under photoautotrophic nitrogen deprivation and allows maintaining high photosynthetic activity. The DYRKP kinase therefore represents an attractive target for improving the energy density of microalgae or crop plants.

Results

By screening an insertional mutant library on the ability of mutants to accumulate and re-mobilize reserve compounds, we isolated a Chlamydomonas mutant (starch degradation 1, std1) deficient for a dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK). The std1 mutant accumulates higher levels of starch and oil than wild-type and maintains a higher photosynthetic activity under nitrogen starvation. Phylogenetic analysis revealed that this kinase (named DYRKP) belongs to a plant-specific subgroup of the evolutionarily conserved DYRK kinase family. Furthermore, hyper-accumulation of storage compounds occurs in std1 mostly under low light in photoautotrophic condition, suggesting that the kinase normally acts under conditions of low energy status to limit reserve accumulation. Conclusions: The DYRKP kinase is proposed to act as a negative regulator of the sink capacity of photosynthetic cells that integrates nutrient and energy signals. Inactivation of the kinase strongly boosts accumulation of reserve compounds under photoautotrophic nitrogen deprivation and allows maintaining high photosynthetic activity. The DYRKP kinase therefore represents an attractive target for improving the energy density of microalgae or crop plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。