The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells

拟南芥的高光反应涉及维管束鞘细胞之间的脱落酸信号传导

阅读:9
作者:Gregorio Galvez-Valdivieso, Michael J Fryer, Tracy Lawson, Katie Slattery, William Truman, Nicholas Smirnoff, Tadao Asami, William J Davies, Alan M Jones, Neil R Baker, Philip M Mullineaux

Abstract

Previously, it has been shown that Arabidopsis thaliana leaves exposed to high light accumulate hydrogen peroxide (H2O2) in bundle sheath cell (BSC) chloroplasts as part of a retrograde signaling network that induces ASCORBATE PEROXIDASE2 (APX2). Abscisic acid (ABA) signaling has been postulated to be involved in this network. To investigate the proposed role of ABA, a combination of physiological, pharmacological, bioinformatic, and molecular genetic approaches was used. ABA biosynthesis is initiated in vascular parenchyma and activates a signaling network in neighboring BSCs. This signaling network includes the Galpha subunit of the heterotrimeric G protein complex, the OPEN STOMATA1 protein kinase, and extracellular H2O2, which together coordinate with a redox-retrograde signal from BSC chloroplasts to activate APX2 expression. High light-responsive genes expressed in other leaf tissues are subject to a coordination of chloroplast retrograde signaling and transcellular signaling activated by ABA synthesized in vascular cells. ABA is necessary for the successful adjustment of the leaf to repeated episodes of high light. This process involves maintenance of photochemical quenching, which is required for dissipation of excess excitation energy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。