Tracking localization and secretion of cellulase spatiotemporally and directly in living Trichoderma reesei

在活体里氏木霉中时空直接追踪纤维素酶的定位和分泌

阅读:8
作者:Chengcheng Li, Ai-Ping Pang, Hang Yang, Roujing Lv, Zhihua Zhou, Fu-Gen Wu, Fengming Lin

Background

Filamentous fungi secret hydrolytic enzymes like cellulase and hemicellulase outside the cells, serving as important scavengers of plant biomass in nature and workhorses in the enzyme industry. Unlike the extensive study on the mechanism of cellulase production in fungi, research on spatiotemporal distribution and secretion of cellulase in fungi is lacking, retarding the deeper understanding of the molecular mechanism behind the fungal cellulase production. Result: Recombinant Trichoderma reesei strains RBGL, RCBH, and RCMC were successfully constructed from T. reesei RUT-C30, expressing red fluorescent protein DsRed-tagged versions of β-glucosidase (BGL), cellobiohydrolase (CBH), and endoglucanase (CMC), respectively. With the assistance of these strains, we found that all three cellulase components BGL, CBH, and CMC diffused throughout the whole fungal mycelium with major accumulation at the hyphal apexes. These enzymes located in ER, Golgi, vacuoles and cell membrane/wall, but not septum, and secreted abundantly into the culture medium. Moreover, the major secretion of CBH and CMC started more early than that of BGL. Brefeldin A (BFA) completely blocked cellulase expression and secretion in T. reesei.

Conclusion

Based on recombinant T. reesei RBGL, RCBH, and RCMC expressing DsRed-fused versions of BGL, CBH, and CMC, respectively, the distribution and secretion of cellulase production in T. reesei were first visualized directly in a dynamic way, preliminarily mapping the location and secretion of T. reesei cellulase and providing evidence for revealing the secretion pathways of cellulase in T. reesei. The obtained results suggest that cellulase excretion majorly occurs via the conventional ER-Golgi secretory pathway, and might be assisted through unconventional protein secretion pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。