Identification of Critical Phosphorylation Sites Enhancing Kinase Activity With a Bimodal Fusion Framework

利用双峰融合框架识别增强激酶活性的关键磷酸化位点

阅读:14
作者:Menghuan Zhang, Yizhi Zhang, Keqin Dong, Jin Lin, Xingang Cui, Yong Zhang

Abstract

Phosphorylation is an indispensable regulatory mechanism in cells, with specific sites on kinases that can significantly enhance their activity. Although several such critical phosphorylation sites (phos-sites) have been experimentally identified, many more remain to be explored. To date, no computational method exists to systematically identify these critical phos-sites on kinases. In this study, we introduce PhoSiteformer, a transformer-inspired foundational model designed to generate embeddings of phos-sites using phosphorylation mass spectrometry data. Recognizing the complementary insights offered by protein sequence data and phosphorylation mass spectrometry data, we developed a classification model, CSPred, which employs a bimodal fusion strategy. CSPred combines embeddings from PhoSiteformer with those from the protein language model ProtT5. Our approach successfully identified 77 critical phos-sites on 58 human kinases. Two of these sites, T517 on PKG1 and T735 on PRKD3, have been experimentally verified. This study presents the first systematic and computational approach to identify critical phos-sites that enhance kinase activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。