Comparison of characteristics and immune responses between paired human nasal and bronchial epithelial organoids

人鼻腔和支气管上皮类器官的特征和免疫反应比较

阅读:6
作者:Lu Zhu #, Wenhao Yang #, Jiaxin Luo, Danli Lu, Yanan Hu, Rui Zhang, Yan Li, Li Qiu, Zelian Chen, Lina Chen, Hanmin Liu6

Background

The nasal epithelium, as part of a continuous and integrated airway epithelium, provides a more accessible sample source than the bronchial epithelium. However, the similarities and differences in gene expression patterns and immune responses between these two sites have not been extensively studied.

Conclusions

NO and BO serve as robust in vitro models, faithfully recapitulating the biological characteristics of upper respiratory epithelial cells. The different regions of respiratory epithelial cells exhibit distinct immune responses, underscoring their complementary roles in exploring airway immune mechanisms and disease pathophysiology.

Results

Four lines of matched nasal and bronchial airway epithelial cells obtained from the four patients were embedded in Matrigel and cultured in thechemically defined medium to generate patient-derived nasal organoids (NO) and bronchial organoids (BO). Histologic examination of nasal organoid tissue revealed high similarity and a reduced ciliary beat frequency compared to bronchial organoid tissue. Whole exome sequencing revealed that over 99% of single nucleotides were shared between the NO and matched BO and there was a 95% overlap in their RNA transcriptomes. RNA sequencing analysis of differentially expressed genes indicated a significant reduction in the immune response in NO. RSV infection revealed more productive replication in NO, with a downregulated immune pathway identified by RNA sequencing analysis and upregulated levels of pro-inflammatory cytokines in culture supernatants in NO compared to BO. Conclusions: NO and BO serve as robust in vitro models, faithfully recapitulating the biological characteristics of upper respiratory epithelial cells. The different regions of respiratory epithelial cells exhibit distinct immune responses, underscoring their complementary roles in exploring airway immune mechanisms and disease pathophysiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。