NEDD4 over-expression regulates the afatinib resistant phenotype of NSCLC cells

NEDD4 过表达调控 NSCLC 细胞阿法替尼耐药表型

阅读:7
作者:Laurence Booth, Jane L Roberts, Andrew Poklepovic, Paul Dent

Abstract

We focused on defining the role of the E3 ligase NEDD4 in NSCLC cell afatinib resistance. Afatinib resistant H1975 clones over-expressed NEDD4 and c-MET compared to control clones and expressed less ERBB1, ERBB3, ERBB4 and PTEN than control clones. Knock down of NEDD4 enhanced the expression of PTEN, ERBB1/3/4 and c-MET. This was also associated with a ∼3-fold enhancement in both mTOR expression and mTOR phosphorylation and a ∼4-fold elevation in phospho-ULK-1 S757 levels. In the absence of NEDD4 or the autophagy regulatory protein Beclin1, neither the drug combination of [pemetrexed + sildenafil] nor the HDAC inhibitor sodium valproate was as capable of: reducing the expression of ERBB1/3/4; reducing phosphorylation of ULK-1 S757; or at enhancing the phosphorylation of ULK-1 S317 and ATG13 S318. [Pemetrexed + sildenafil] exposure, via autophagic degradation, reduced the expression of multiple HDACs. Reduced expression of Class I HDACs lowered the expression of ERBB1/3/4 and PTEN. Treatment of afatinib resistant clones lacking NEDD4 with [pemetrexed + sildenafil] or sodium valproate resulted in a weaker induction of autophagosome and autolysosome formation and with reduced cell killing. Knock down of NEDD4 reduced [pemetrexed + sildenafil] lethality; knock down of PTEN enhanced drug-induced killing. Combined knock down of NEDD4 and PTEN reduced the elevated amount of killing caused by PTEN knock down alone back to basal levels. Collectively, our data argue that NEDD4 plays an essential role in maintaining the afatinib-resistant phenotype in our resistant H1975 clones.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。