Standardization of platelet releasate products for clinical applications in cell therapy: a mathematical approach

细胞治疗临床应用的血小板释放物产品标准化:数学方法

阅读:7
作者:Francesco Agostini, Jerry Polesel, Monica Battiston, Elisabetta Lombardi, Stefania Zanolin, Alessandro Da Ponte, Giuseppe Astori, Cristina Durante, Mario Mazzucato

Background

Standardized animal-free components are required for manufacturing cell-based medicinal products. Human platelet concentrates are sources of growth factors for cell expansion but such products are characterized by undesired variability. Pooling together single-donor products improves consistency, but the minimal pool sample size was never determined.

Discussion

Results deriving from our algorithm and from validation utilizing real SRGF pools demonstrated that pooling n = 16 single-donor SRGF products can ameliorate variability of final growth factor concentrations. Different pools of n = 16 single donor SRGF displayed consitent capability to modulate growth and differentiation potential of expanded ASC. Increasing the pool size should not further improve product composition.

Methods

Supernatant rich in growth factors (SRGF) derived from n = 44 single-donor platelet-apheresis was obtained by CaCl2 addition. n = 10 growth factor concentrations were measured. The data matrix was analyzed by a novel statistical algorithm programmed to create 500 groups of random data from single-donor SRGF and to repeat this task increasing group statistical sample size from n = 2 to n = 20. Thereafter, in created groups (n = 9500), the software calculated means for each growth factor and, matching groups with the same sample size, the software retrieved the percent coefficient of variation (CV) between calculated means. A 20% CV was defined as threshold. For validation, we assessed the CV of concentrations measured in n = 10 pools manufactured according to algorithm

Results

Growth factor concentrations in single-donor SRGF were characterized by high variability (mean (pg/ml)-CV); VEGF: 950-81.4; FGF-b: 27-74.6; PDGF-AA: 7883-28.8; PDGF-AB: 107834-32.5; PDGF-BB: 11142-48.4; Endostatin: 305034-16.2; Angiostatin: 197284-32.9; TGF-β1: 68382-53.7; IGF-I: 70876-38.3; EGF: 2411-30.2). In silico performed analysis suggested that pooling n = 16 single-donor SRGF reduced CV below 20%. Concentrations measured in 10 pools of n = 16 single SRGF were not different from mean values measured in single SRGF, but the CV was reduced to or below the threshold. Separate SRGF pools failed to differently affect ASC growth rate (slope pool A = 0.6; R2 = 0.99; slope pool B = 0.7; R2 0.99) or differentiation potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。