Transferred subgroup false discovery rate for rare post-translational modifications detected by mass spectrometry

质谱法检测的罕见翻译后修饰的转移亚组错误发现率

阅读:7
作者:Yan Fu, Xiaohong Qian

Abstract

In shotgun proteomics, high-throughput mass spectrometry experiments and the subsequent data analysis produce thousands to millions of hypothetical peptide identifications. The common way to estimate the false discovery rate (FDR) of peptide identifications is the target-decoy database search strategy, which is efficient and accurate for large datasets. However, the legitimacy of the target-decoy strategy for protein-modification-centric studies has rarely been rigorously validated. It is often the case that a global FDR is estimated for all peptide identifications including both modified and unmodified peptides, but that only a subgroup of identifications with a certain type of modification is focused on. As revealed recently, the subgroup FDR of modified peptide identifications can differ dramatically from the global FDR at the same score threshold, and thus the former, when it is of interest, should be separately estimated. However, rare modifications often result in a very small number of modified peptide identifications, which makes the direct separate FDR estimation inaccurate because of the inadequate sample size. This paper presents a method called the transferred FDR for accurately estimating the FDR of an arbitrary number of modified peptide identifications. Through flexible use of the empirical data from a target-decoy database search, a theoretical relationship between the subgroup FDR and the global FDR is made computable. Through this relationship, the subgroup FDR can be predicted from the global FDR, allowing one to avoid an inaccurate direct estimation from a limited amount of data. The effectiveness of the method is demonstrated with both simulated and real mass spectra.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。