Galectin-3 inhibition reduces fibrotic scarring and promotes functional recovery after spinal cord injury in mice

半乳糖凝集素 3 抑制剂可减少小鼠脊髓损伤后的纤维化瘢痕并促进功能恢复

阅读:8
作者:Fangli Shan #, Jianan Ye #, Xinzhong Xu #, Chao Liang, Yuanzhe Zhao, Jingwen Wang, Fangru Ouyang, Jianjian Li, Jianwei Lv, Zhonghan Wu, Fei Yao, Juehua Jing, Meige Zheng

Background

In the context of spinal cord injury (SCI), infiltrating macrophages assume prominence as the primary inflammatory cells within the lesion core, where the fibrotic scar is predominantly orchestrated by platelet-derived growth factor receptor beta (PDGFRβ+) fibroblasts. Galectin-3, a carbohydrate-binding protein of the lectin family, is notably expressed by infiltrating hematogenous macrophages and mediates cell-cell interactions. Although Galectin-3 has been shown to contribute to the endocytic internalization of PDGFRβ in vitro, its specific role in driving fibrotic scar formation after SCI has not been determined.

Conclusions

Our finding underscores the pivotal role of macrophage-derived Galectin-3 in modulating the sustained internalized activation of PDGFRβ within fibroblasts, providing a novel mechanistic insight into fibrotic scarring post-SCI.

Methods

We employed a crush mid-thoracic (T10) SCI mouse model. Galectin-3 inhibition after SCI was achieved through intrathecal injection of the Galectin-3 inhibitor TD139 or in situ injection of lentivirus carrying Galectin-3-shRNA (Lv-shLgals3). A fibrosis-induced mice model was established by in situ injection of platelet-derived growth factor D (PDGFD) or recombinant Galectin-3 (rGalectin-3) into the uninjured spinal cord. Galectin-3 internalization experiments were conducted in PDGFRβ+ fibroblasts cocultured in conditioned medium in vitro.

Results

We identified the spatial and temporal correlation between macrophage-derived Galectin-3 and PDGFRβ in fibroblasts from 3 to 56 days post-injury (dpi). Administration of TD139 via intrathecal injection or in situ injection of Lv-shLgals3 effectively mitigated fibrotic scar formation and extracellular matrix deposition within the injured spinal cord, leading to better neurological outcomes and function recovery after SCI. Furthermore, the fibrosis-inducing effects of exogenous PDGFD in the uninjured spinal cord could be blocked by TD139. In vitro experiments further demonstrated the ability of PDGFRβ+ fibroblasts to internalize Galectin-3, with Galectin-3 inhibition resulting in reduced PDGFRβ expression. Conclusions: Our finding underscores the pivotal role of macrophage-derived Galectin-3 in modulating the sustained internalized activation of PDGFRβ within fibroblasts, providing a novel mechanistic insight into fibrotic scarring post-SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。