METTL1 mediates PKM m7G modification to regulate CD155 expression and promote immune evasion in colorectal cancer

METTL1 介导 PKM m7G 修饰来调节 CD155 表达并促进结直肠癌的免疫逃避

阅读:6
作者:Fang Wang #, Chen Yang #, Fang Zheng #, Yang Yan, Guifang Li, Yanyan Feng, Hejia Xu, Zilong He, Dongyan Cai, Hairong Sun, Xiaowei Qi, Yong Mao

Background

Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.

Conclusions

Our findings reveal a general mechanism by which METTL1/PKM2/H3K9la signaling regulates RNA metabolism and highlight METTL1 targeting as a potential strategy for CRC immunotherapy.

Methods

The expression levels of Methyltransferase-like 1 (METTL1) and m7G in human tissues were determined. In this study, the effect of METTL1 on RNA m7G levels was evaluated, the effect of METTL1 on PKM mRNA modification was confirmed, the expression level of the PKM2 protein was detected, and the mechanism involved RT‒qPCR, Western blot, RNA stability analysis and RIP analysis. Lactate and H3K9 lactylation (H3K9la) induced by METTL1/PKM2 were analyzed via the extracellular acidification rate (ECAR) and lactic acid assays. Cut&Run was used to detect METTL1/PKM2-induced CD155 (PVR) transcription. In addition, METTL1 knockout mice were studied in vivo with CD155 blockers.

Results

We demonstrated that m7G RNA METTL1 enhances PKM2 expression by acting on PKM mRNA, leading to tumor progression and increased glycolysis. Specifically, METTL1 mediates m7G methylation of PKM mRNA and enhances the expression of its encoded PKM2, which in turn enhances glycolysis, promotes H3K9la, and activates METTL1 transcription, creating a positive feedback loop. Moreover, increased PKM2 dimer expression and nuclear translocation activated CD155 expression and induced CRC immune evasion. Conclusions: Our findings reveal a general mechanism by which METTL1/PKM2/H3K9la signaling regulates RNA metabolism and highlight METTL1 targeting as a potential strategy for CRC immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。