BLM helicase overexpressed in human gliomas contributes to diverse responses of human glioma cells to chemotherapy

人类神经胶质瘤中过度表达的 BLM 解旋酶导致人类神经胶质瘤细胞对化疗产生不同的反应

阅读:6
作者:Kamil Wojnicki, Agnieszka Kaczmarczyk, Bartosz Wojtas, Bozena Kaminska

Abstract

Most of anti-tumour therapies eliminate neoplastic cells by introducing DNA damage which ultimately triggers cell death. These effects are counteracted by activated DNA repair pathways to sustain tumour proliferation capacity. RECQL helicases family, including BLM, participate in DNA damage and repair, and prevent the replication stress. Glioblastoma (GBM) is a common, malignant brain tumour that inevitably recurs despite surgical resection, radiotherapy, and chemotherapy with temozolomide (TMZ). Expression and functions of the BLM helicase in GBM therapy resistance have not been elucidated. We analysed expression and localisation of BLM in human gliomas and several glioma cell lines using TCGA datasets, immunostaining and Western blotting. BLM depleted human glioma cells were generated with CRISPR/Cas9 system. Effects of chemotherapeutics on cell proliferation, DNA damage and apoptosis were determined with flow cytometry, immunofluorescence, Western blotting and RNA sequencing. We found upregulated BLM mRNA levels in malignant gliomas, increased cytosolic localisation and poor survival of GBM patients with high BLM expression. BLM deficiency in LN18 and LN229 glioma cells resulted in profound transcriptomic alterations, reduced cell proliferation, and altered cell responses to chemotherapeutics. BLM-deficient glioma cells were resistant to the TMZ and PARP inhibitor treatment and underwent polyploidy or senescence depending on the TP53 activity. Our findings of high BLM expression in GBMs and its roles in responses to chemotherapeutics provide a rationale for targeting BLM helicase in brain tumours. BLM deficiency affects responses of glioma cells to chemotherapeutics targeting PARP1 dependent pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。