UBE2J1 is identified as a novel plasma cell-related gene involved in the prognosis of high-grade serous ovarian cancer

UBE2J1 被认定为一种新的浆细胞相关基因,与高级别浆液性卵巢癌的预后有关

阅读:21
作者:Yunjie Tian, Ruoyu Dong, Yingxia Guan, Ying Wang, Wei Zhao, Jun Zhang, Shan Kang

Background

Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).

Conclusions

Overall, this study elucidated the role of plasma cells and revealed UBE2J1 as a novel oncogene in HGSOC, uncovering new mechanisms related to HGSOC tumorigenesis and promising therapeutic targets for HGSOC patients.

Methods

We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package. The effects of immune cell markers on prognosis were analyzed via univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and gene set variation analysis (GSVA) of bulk sequencing data from The Cancer Genome Atlas (TCGA)-HGSOC cohort. Finally, the effects of key markers on HGSOC cells were evaluated via Cell Counting Kit-8 (CCK-8), Transwell, colony formation, wound healing, immunofluorescence and in vivo tumor growth assays.

Results

At the single-cell level, we detected a significant increase in the proportion of plasma cells in HGSOC samples compared to that in normal ovarian samples. Within HGSOC tissues, these plasma cells were found to interact with CD8 + T cells, fibroblasts and endothelial cells. In addition, patients in the high-plasma cell-related score group had better survival rates and higher epithelial‒mesenchymal transition (EMT), apoptosis and immune scores. Moreover, univariate Cox and LASSO regression analyses revealed that ubiquitin-conjugating enzyme E2 J1 (UBE2J1) is a prognostic marker in HGSOC. Further functional studies revealed that overexpression of UBE2J1 promoted cell proliferation, invasion, migration and colony formation, whereas UBE2J1 knockdown attenuated the abovementioned cellular behaviors. Additionally, UBE2J1 overexpression promoted EMT, as evidenced by alterations in the protein expression levels of N-cadherin, snail family transcriptional repressor 2 (Slug), Twist family BHLH transcription factor 1 (Twist 1) and E-cadherin. Moreover, we found that UBE2J1 silencing was able to inhibit the tumor growth in vivo. Conclusions: Overall, this study elucidated the role of plasma cells and revealed UBE2J1 as a novel oncogene in HGSOC, uncovering new mechanisms related to HGSOC tumorigenesis and promising therapeutic targets for HGSOC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。