Low dose DNA methyltransferase inhibitors potentiate PARP inhibitors in homologous recombination repair deficient tumors

低剂量 DNA 甲基转移酶抑制剂增强 PARP 抑制剂在同源重组修复缺陷肿瘤中的疗效

阅读:27
作者:Romain Pacaud, Scott Thomas, Sibapriya Chaudhuri, Ann Lazar, Luika A Timmerman, Pamela N Munster

Background

Poly (ADP-Ribose) polymerase inhibitors are approved for treatment of tumors with BRCA1/2 and other homologous recombination repair (HRR) mutations. However, clinical responses are often not durable and treatment may be detrimental in advanced cancer due to excessive toxicities. Thus we are seeking alternative therapeutics to enhance PARP-directed outcomes. In an effort to expand the clinical use of PARP inhibitors to HRR proficient tumors, several groups have tested combinations of DNA methyltransferase inhibitors and PARP inhibitors. While this approach attenuated tumor cell proliferation in preclinical studies, subsequent clinical trials revealed little benefit. We hypothesized that benefit for this drug combination would only be specific to HRR deficient tumors, due to their inability to enact high fidelity DNA repair with subsequent cell death.

Conclusions

We conclude that low dose DNA methyltransferase inhibition can cooperate with low dose PARP inhibition to increase DNA damage predominantly in cells with HRR deficiencies, ultimately producing more cell death than in HRR proficient tumors. We predict that clinical benefit will more likely be apparent in patients with DNA repair defective tumors and are focusing clinical exploration of this drug combination in these patients, with the goals of enhancing tumor cell death at minimal toxicities.

Methods

We generated hypomorphic BRCA1 and BRCA2 variants of the HRR proficient triple negative breast cancer cell line MDA-MB-231. We compared therapeutic response features such as RAD51 focus formation, cell cycle fraction alterations, DNA damage accumulation, colony formation, and cell death of these and other cell lines with and without intrinsic BRCA1/2 mutations.

Results

Our targeted variants and cells with intrinsic BRCA1/2 mutations responded to low dose combination therapeutic treatment by G2M stalling, compounded DNA damage, severely attenuated colony formation, and importantly, increased cell death. In contrast, the parental MDA-MB-231 cells and other HRR proficient cell lines produced smaller cell populations with short term treatment, but with much less cumulative DNA damage, and minimal cell death. In animal studies, our BRCA-engineered hypomorphs and several independent PDX models with clinically relevant BRCA mutations were acutely more vulnerable to this drug combination. Conclusions: We conclude that low dose DNA methyltransferase inhibition can cooperate with low dose PARP inhibition to increase DNA damage predominantly in cells with HRR deficiencies, ultimately producing more cell death than in HRR proficient tumors. We predict that clinical benefit will more likely be apparent in patients with DNA repair defective tumors and are focusing clinical exploration of this drug combination in these patients, with the goals of enhancing tumor cell death at minimal toxicities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。