Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability

将废水处理整合到木质纤维素生物精炼厂的工艺设计中,以提高经济可行性

阅读:6
作者:Tyler Tobin, Rick Gustafson, Renata Bura, Heidi L Gough

Background

Production and use of bio-based products offer advantages over conventional petrochemicals, yet the relatively high cost of production has restricted their mainstream adoption. Optimization of wastewater treatment processes could reduce capital expenditures, lowering the barrier to market entry for lignocellulosic biorefineries. This paper characterizes wastewater associated with lignocellulosic ethanol production and evaluates potential wastewater treatment operations.

Conclusions

It is concluded that wastewater treatment technologies should be better integrated with conversion process design and feedstock production. Efforts to recycle resources throughout the biofuel supply chain through application of ecosystem services provided by adjacent feedstock plantations and recovery of resources from the waste stream to reduce overall capital and operating costs of bioconversion facilities.

Results

It is found that organic material is intrinsic to bioconversion wastewater, representing up to 260 kg of biological oxygen demand per tonne of feedstock processed. Inorganics in the wastewater largely originate from additions during pretreatment and pH adjustments, which increase the inorganic loading by 44 kg per tonne of feedstock processed. Adjusting the ethanol production process to decrease addition of inorganic material could reduce the demands and therefore cost of waste treatment. Various waste treatment technologies-including those that take advantage of ecosystem services provided by feedstock production-were compared in terms of capital and operating costs, as well as technical feasibility. Conclusions: It is concluded that wastewater treatment technologies should be better integrated with conversion process design and feedstock production. Efforts to recycle resources throughout the biofuel supply chain through application of ecosystem services provided by adjacent feedstock plantations and recovery of resources from the waste stream to reduce overall capital and operating costs of bioconversion facilities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。