Mutational analysis of the N-terminal domain of UreR, the positive transcriptional regulator of urease gene expression

尿素酶基因表达的正向转录调节因子 UreR 的 N 端结构域突变分析

阅读:6
作者:Maria C Parra, Carleen M Collins

Abstract

The Escherichia coli plasmid-encoded urease, a virulence factor in human and animal infections of the urinary and gastroduodenal tracts, is induced when the substrate urea is present in the growth medium. Urea-dependent urease expression is mediated at the transcriptional level by the AraC-like activator UreR. Previous work has shown that a peptide representing the N-terminal 194 amino-acid residues of UreR binds urea at a single site, full-length UreR forms an oligomer, and the oligomerization motif is thought to reside in the N-terminal portion of the molecule. The C-terminal domain of UreR contains two helix-turn-helix motifs presumed to be necessary for DNA binding. In this study, we exploited mutational analyses at the N-terminal domain of UreR to determine if this domain dimerizes similar to other AraC family members. UreR mutants were analyzed for the ability to activate transcription of lacZ from an ureDp-lacZ transcriptional fusion. A construct encoding the N-terminal 194 amino acids of UreR, eluted as an oligomer by gel filtration and had a dominant negative phenotype over the wild-type ureR allele. We hypothesize that this dominant negative phenotype results from the formation of inactive heterodimers between wild-type and truncated UreR. Dominant negative analysis and cross-linking assays demonstrated that E. coli UreR is active as a dimer and dimerization occurs within the first 180 residues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。