Signaling network state predicts twist-mediated effects on breast cell migration across diverse growth factor contexts

信号网络状态预测扭曲介导的跨不同生长因子环境乳腺细胞迁移的影响

阅读:6
作者:Hyung-Do Kim, Aaron S Meyer, Joel P Wagner, Shannon K Alford, Alan Wells, Frank B Gertler, Douglas A Lauffenburger

Abstract

Epithelial-mesenchymal transition (EMT), whether in developmental morphogenesis or malignant transformation, prominently involves modified cell motility behavior. Although major advances have transpired in understanding the molecular pathways regulating the process of EMT induction per se by certain environmental stimuli, an important outstanding question is how the activities of signaling pathways governing motility yield the diverse movement behaviors characteristic of pre-induction versus postinduction states across a broad landscape of growth factor contexts. For the particular case of EMT induction in human mammary cells by ectopic expression of the transcription factor Twist, we found the migration responses to a panel of growth factors (EGF, HRG, IGF, HGF) dramatically disparate between confluent pre-Twist epithelial cells and sparsely distributed post-Twist mesenchymal cells-but that a computational model quantitatively integrating multiple key signaling node activities could nonetheless account for this full range of behavior. Moreover, motility in both conditions was successfully predicted a priori for an additional growth factor (PDGF) treatment. Although this signaling network state model could comprehend motility behavior globally, modulation of the network interactions underlying the altered pathway activities was identified by ascertaining differences in quantitative topological influences among the nodes between the two conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。