Clinical evaluation of metagenomic next-generation sequencing in unbiased pathogen diagnosis of urinary tract infection

宏基因组新一代测序在泌尿道感染病原体无偏诊断中的临床评估

阅读:5
作者:Ye Wang #, Ting Chen #, Shengwei Zhang #, Lei Zhang #, Qian Li, Qingyu Lv, Decong Kong, Hua Jiang, Yuhao Ren, Yongqiang Jiang, Yan Li, Wenhua Huang, Peng Liu

Background

Early availability of pathogen identification in urinary tract infections (UTIs) has critical importance in disease management. Metagenomic next-generation sequencing (mNGS) has the potential to transform how acute and serious infections are diagnosed by offering unbiased and culture-free pathogen detection. However, clinical experience with application of the mNGS test is relatively limited.

Conclusion

These results demonstrate that the pathogen detection performance of mNGS is sufficient for diagnostic testing in clinical settings. As the method is generally unbiased, it can improve diagnostic testing of UTIs and other microbial infections.

Methods

We therefore established a MinION-based mNGS pathogens diagnostic platform and evaluated its potential for clinical implementation in UTIs with clinical samples. 213 urine samples from patients with suspected UTIs were included and subjected to mNGS testing using the MinION platform. mNGS

Results

The mNGS exhibited a sensitivity of 81.4% and a specificity of 92.3%, along with a positive predictive value of 96.6%, a negative predictive value of 64.9%, and an overall accuracy of 84.4%, all of which were determined based on the gold standard of routine culture results. When assessed against the composite standard, the sensitivity and specificity both increased to 89.9% and 100%, respectively, while the accuracy rose to 92.4%. Notably, the positive predictive value and negative predictive value also saw improvements, reaching 100% and 76.8%, respectively. Moreover, this diagnostic platform successfully identified dsDNA viruses. Among the 65 culture-negative samples, the viral detection rate reached 33.8% (22/65) and was subsequently validated through qPCR. Furthermore, the automatic bioinformatics pipeline we developed enabled one-click analysis from data to results, leading to a significant reduction in diagnosis time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。