Turning the tables on cytomegalovirus: targeting viral Fc receptors by CARs containing mutated CH2-CH3 IgG spacer domains

扭转巨细胞病毒的局面:通过含有突变 CH2-CH3 IgG 间隔域的 CAR 靶向病毒 Fc 受体

阅读:5
作者:Julia Proff, Charlotte U Brey, Armin Ensser, Wolfgang Holter, Manfred Lehner

Background

During infection with human cytomegalovirus (HCMV) several viral proteins occur on cell surfaces in high quantity. We thus pursue an HLA-independent approach for immunotherapy of HCMV using chimeric antigen receptors (CARs) and bispecific BiTE® antibody constructs. In this context, HCMV-encoded proteins that mediate viral immune evasion and bind human IgG might represent particularly attractive target antigens. Unlike in observations of similar approaches for HIV and hepatitis B and C viruses, however, HCMV-infected cells develop a striking resistance to cytotoxic effector functions at later stages of the replication cycle. In our study we therefore wanted to test two hypotheses: (1) CAR T cells can efficiently inhibit HCMV replication independently from cytotoxic effector functions, and (2) HCMV can be targeted by CH2-CH3 IgG spacer domains that contain mutations previously reported to prevent exhaustion and to rescue CAR T cell function in vivo.

Conclusions

Our findings identify HCMV-encoded FcRs as an attractive additional target for HCMV immunotherapy by CARs and possibly bispecific antibodies. The use of specifically mutated IgG domains that bind to HCMV-FcRs without recognizing endogenous FcRs may supersede screening for novel binders directed against individual HCMV-FcRs.

Methods

Replication of GFP-encoding recombinant HCMV in fibroblasts in the presence and absence of supernatants from T cell co-cultures plus/minus cytokine neutralizing antibodies was analyzed by flow cytometry. CARs with wild type and mutated CH2-CH3 domains were expressed in human T cells by mRNA electroporation, and the function of the CARs was assessed by quantifying T cell cytokine secretion.

Results

We confirm and extend previous evidence of antiviral cytokine effects and demonstrate that CAR T cells strongly block HCMV replication in fibroblasts mainly by combined secretion of IFN-γ and TNF. Furthermore, we show that fibroblasts infected with HCMV strains AD169 and Towne starting from day 3 have a high capacity for binding of human IgG1 and also strongly activate T cells expressing a CAR with CH2-CH3 domain. Importantly, we further show that mutations in the CH2-CH3 domain of IgG1 and IgG4, which were previously reported to rescue CAR T cell function by abrogating interaction with endogenous Fc receptors (FcRs), still enable recognition of FcRs encoded by HCMV. Conclusions: Our findings identify HCMV-encoded FcRs as an attractive additional target for HCMV immunotherapy by CARs and possibly bispecific antibodies. The use of specifically mutated IgG domains that bind to HCMV-FcRs without recognizing endogenous FcRs may supersede screening for novel binders directed against individual HCMV-FcRs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。