Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture

甘蔗渣高温厌氧纯培养产氢影响关键因素优化

阅读:5
作者:Zhicheng Lai, Muzi Zhu, Xiaofeng Yang, Jufang Wang, Shuang Li

Background

Hydrogen is regarded as an attractive future energy carrier for its high energy content and zero CO2 emission. Currently, the majority of hydrogen is generated from fossil fuels. However, from an environmental perspective, sustainable hydrogen production from low-cost lignocellulosic biomass should be considered. Thermophilic hydrogen production is attractive, since it can potentially convert a variety of biomass-based substrates into hydrogen at high yields.

Conclusions

Considering these advantages and theimpressive HPR, the potential of hydrogen production using T. aotearoense SCUT27/Δldh is intriguing. Thermophilic, anaerobic fermentation using SCB hydrolysates as the medium by this strain would be a practical and eco-friendly process.

Results

Sugarcane bagasse (SCB) was used as the substrate for hydrogen production by Thermoanaerobacterium aotearoense SCUT27/Δldh. The key parameters of acid hydrolysis were studied through the response surface methodology. The hydrogen production was maximized under the conditions of 2.3% of H2SO4 for 114.2 min at 115°C. Using these conditions, a best hydrogen yield of 1.86 mol H2/mol total sugar and a hydrogen production rate (HPR) of 0.52 L/L · h were obtained from 2 L SCB hydrolysates in a 5-L fermentor, showing a superior performance to the results reported in the literature. Additionally, no obvious carbon catabolite repression (CCR) was observed during the fermentation using the multi-sugars as substrates. Conclusions: Considering these advantages and theimpressive HPR, the potential of hydrogen production using T. aotearoense SCUT27/Δldh is intriguing. Thermophilic, anaerobic fermentation using SCB hydrolysates as the medium by this strain would be a practical and eco-friendly process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。