An enhanced in vivo stable isotope labeling by amino acids in cell culture (SILAC) model for quantification of drug metabolism enzymes

增强体内稳定同位素标记细胞培养氨基酸 (SILAC) 模型用于量化药物代谢酶

阅读:17
作者:A Kenneth MacLeod, Padraic G Fallon, Sheila Sharp, Colin J Henderson, C Roland Wolf, Jeffrey T-J Huang

Abstract

Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug-drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of drug pharmacokinetics, pharmacodynamics, and of chemically treated and genetically modified mouse models.

文献解析

1. 文献背景信息

  • ​标题/作者/期刊/年份​​:

    • 标题:An enhanced in vivo SILAC model for quantification of drug metabolism enzymes

    • 作者:A Kenneth MacLeod等(含C Roland Wolf等代谢研究权威)

    • 期刊:Molecular & Cellular Proteomics(IF=6.100,蛋白质组学领域重要期刊)

    • 年份:2015(时效性中等,但方法学仍有参考价值)

  • ​研究领域与背景​​:

    • 领域:​​药物代谢酶(DME)的定量蛋白质组学​​,聚焦于细胞色素P450(Cyp)等酶在肝脏中的动态调控。

    • 现状/争议:DME(如Cyp1a、2b)在基础状态下表达量低,传统SILAC技术难以检测其诱导变化,限制了对药物代谢和毒理机制的研究。

  • ​研究动机​​:

    • 填补空白:通过​​同步激活核受体​​增强DME表达,改进体内SILAC模型,解决低丰度酶定量难题,提升药物代谢研究的可靠性。

2. 研究问题与假设

  • ​核心问题​​:如何通过改进SILAC技术实现低丰度药物代谢酶的高灵敏度定量?

  • ​假设​​:通过​​配体激活核受体​​诱导DME表达,可显著增强SILAC信号,从而精准量化Cyp等酶的表达变化。

3. 研究方法学与技术路线

  • ​实验设计​​:

    • 比较​​诱导组​​(核受体配体处理)与​​非诱导组​​小鼠肝脏DME表达差异。

    • 使用​​HRN(肝P450还原酶缺失)小鼠模型​​验证方法实用性。

  • ​关键技术​​:

    • ​体内SILAC​​:代谢标记小鼠肝脏蛋白质。

    • ​tHR/SIM LC-MS/MS​​:靶向高分辨率单离子监测,定量386个肽段(代表68种Phase I/II酶)。

  • ​创新方法​​:

    • 首次将​​多核受体同步激活​​与SILAC结合,显著提升低丰度Cyp(如1a、2b)的检测灵敏度(单鼠检出115 vs. 56个肽段)。

4. 结果与数据解析

  • ​主要发现​​:

    • ​诱导组​​:Cyp1a、2a、2b、2c、3a等亚家族酶信号增强,检出肽段数量翻倍(图1/2)。

    • ​HRN小鼠​​:发现​​补偿性调控​​(如Cyp2b10、3a11上调;Hsd11b1下调),提示P450缺失引发代谢网络重塑(表1)。

  • ​数据验证​​:

    • 通过多肽覆盖率和重复样本验证定量可靠性。

  • ​局限性​​:

    • 仅聚焦肝脏,未涉及其他代谢器官;

    • 核受体激活可能干扰内源性代谢稳态。

5. 讨论与机制阐释

  • ​机制解释​​:

    • 核受体(如CAR、PXR)激活通过转录调控上调Cyp表达,补偿HRN小鼠的代谢缺陷。

  • ​与既往研究对比​​:

    • 支持“Cyp亚型间功能冗余”假说(如2c家族成员协同补偿);

    • 补充了​​Hsd​​在代谢调控中的新角色(与既往研究较少关注该酶相关)。

  • ​未解决问题​​:

    • 其他核受体(如PPARα)的协同作用机制;

    • 该方法在人类样本中的适用性。

6. 创新点与学术贡献

  • ​理论创新​​:

    • 提出“​​DME增强型SILAC​​”策略,为低丰度蛋白动态研究提供新思路。

  • ​技术贡献​​:

    • tHR/SIM方法可推广至其他难以定量的膜蛋白或转录因子研究。

  • ​实际价值​​:

    • 优化药物代谢研究模型,助力​​临床前药物相互作用评估​​和​​个性化用药​​开发。


​总结​​:该文献通过方法学创新解决了DME定量难题,为药物代谢领域提供了高灵敏度的研究工具,尤其适用于基因修饰或药物处理动物模型的分析。后续研究可拓展至多器官联用或临床样本验证。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。