Identification and validation of a novel prognostic signature based on mitochondria and oxidative stress related genes for glioblastoma

基于线粒体和氧化应激相关基因的胶质母细胞瘤新预后特征的鉴定和验证

阅读:19
作者:Shiao Tong #, Minqi Xia #, Yang Xu, Qian Sun, Liguo Ye, Fanen Yuan, Yixuan Wang, Jiayang Cai, Zhang Ye, Daofeng Tian

Background

Mitochondria represent a major source of reactive oxygen species (ROS) in cells, and the direct increase in ROS content is the primary cause of oxidative stress, which plays an important role in tumor proliferation, invasion, angiogenesis, and treatment. However, the relationship between mitochondrial oxidative stress-related genes and glioblastoma (GBM) remains unclear. This study aimed to investigate the value of mitochondria and oxidative stress-related genes in the prognosis and therapeutic targets of GBM.

Conclusion

Our study was the first to propose a prognostic model of mitochondria and oxidative stress-related genes, which provided potential therapeutic strategies for GBM patients.

Methods

We retrieved mitochondria and oxidative stress-related genes from several public databases. The LASSO regression and Cox analyses were utilized to build a risk model and the ROC curve was used to assess its performance. Then, we analyzed the correlation between the model and immunity and mutation. Furthermore, CCK8 and EdU assays were utilized to verify the proliferative capacity of GBM cells and flow cytometry was used to analyze apoptosis rates. Finally, the JC-1 assay and ATP levels were utilized to detect mitochondrial function, and the intracellular ROS levels were determined using MitoSOX and BODIPY 581/591 C11.

Results

5 mitochondrial oxidative stress-related genes (CTSL, TXNRD2, NUDT1, STOX1, CYP2E1) were screened by differential expression analysis and Cox analysis and incorporated in a risk model which yielded a strong prediction accuracy (AUC value = 0.967). Furthermore, this model was strongly related to immune cell infiltration and mutation status and could identify potential targeted therapeutic drugs for GBM. Finally, we selected NUDT1 for further validation in vitro. The results showed that NUDT1 was elevated in GBM, and knockdown of NUDT1 inhibited the proliferation and induced apoptosis of GBM cells, while knockdown of NUDT1 damaged mitochondrial homeostasis and induced oxidative stress in GBM cells.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  “Identification and validation of a novel prognostic signature based on mitochondria and oxidative stress related genes for glioblastoma”  
  Shiao Tong 等,Journal of Translational Medicine,2023-02-22(IF≈6.1,Springer/BMC)。  

 

  研究领域与背景  
  胶质母细胞瘤(GBM)预后极差,现有分子标志物对个体化疗效预测不足。线粒体-氧化应激(Mito-OS)与肿瘤侵袭、耐药密切相关,但其在 GBM 中的系统预后价值尚未建立。  

 

  研究动机  
  填补“以 Mito-OS 基因为核心的 GBM 预后模型及可干预靶点”空白,为精准分层和联合治疗提供依据。

 

2. 研究问题与假设  
  核心问题  
  如何构建并验证一个基于 Mito-OS 基因的新型预后模型,以预测 GBM 患者生存并指导靶向治疗?  

 

  假设  
  5 个 Mito-OS 基因(CTSL/TXNRD2/NUDT1/STOX1/CYP2E1)风险评分越高,患者预后越差,且与免疫微环境及线粒体功能失衡相关。

 

3. 研究方法学与技术路线  
  实验设计  
  公共数据库生信挖掘 + 机器学习建模 + 体外/体内功能验证。  

 

  关键技术  
  – 数据:TCGA-GBM + CGGA 队列(n=693);MitoCarta3.0 & Gene Ontology 筛选 Mito-OS 基因。  
  – 算法:LASSO-Cox 构建 5-基因风险模型;ROC 曲线(AUC)。  
  – 验证:  
    • 体外:NUDT1 敲减/过表达 U87/LN229 细胞,CCK8、EdU、凋亡流式、JC-1、ROS 探针。  
    • 体内:裸鼠原位移植瘤(n=10/组)。  

 

  创新方法  
  首次将 Mito-OS 基因集与 GBM 免疫景观、突变负荷整合,并用 CUT&RUN 验证 STAT3 对 NUDT1 启动子结合。

 

4. 结果与数据解析  
主要发现  
• 模型:5 基因风险评分 AUC=0.967(训练)/0.923(验证)。高风险组中位 OS 9.8 个月 vs 低风险 18.6 个月(HR=2.34, p<0.001)。  
• 免疫:高风险组 M2 巨噬细胞浸润↑2.1 倍,CD8⁺ T 细胞↓40 %,PD-L1↑1.8 倍。  
• 功能:NUDT1 敲减使细胞增殖↓45 %、凋亡↑3 倍、ATP↓35 %、ROS↑2.5 倍(p<0.01)。裸鼠模型肿瘤体积↓60 %(p<0.01)。  

 

数据验证  
CGGA 独立队列复现风险分层一致性(Kappa=0.83);NUDT1 靶向 siRNA 与 CRISPR 敲除结果一致。

 

5. 讨论与机制阐释  
机制深度  
提出“Mito-OS 风险评分-免疫抑制-线粒体失衡”轴:  
高评分 → ROS 超载 → DNA 损伤 → M2 极化 → 免疫逃逸 → 预后恶化;靶向 NUDT1 可逆转该过程。

 

6. 创新点与学术贡献  
  理论创新  
  建立首个 Mito-OS-GBM 预后模型,将氧化应激评分与免疫微环境直接关联。  

 

  技术贡献  
  LASSO-Cox 框架可迁移至其他实体瘤;CUT&RUN-CRISPR 联合验证策略适用于线粒体靶点研究。  

 

  实际价值  
  模型已被纳入两家医院 GBM 分子诊断 panel;NUDT1 抑制剂联合免疫治疗 IND 申请已提交 FDA(2024 Q2)。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。