Aerial ammonia exposure induces the perturbation of the interorgan ammonia disposal and branched-chain amino acid catabolism in growing pigs
空气中氨气暴露会引起生长猪器官间氨气处理和支链氨基酸分解代谢紊乱
| 期刊: | Animal Nutrition | 影响因子: | 6.100 |
| 时间: | 2021 | 起止号: | 2021 Dec;7(4):947-958. |
| doi: | 10.1016/j.aninu.2021.04.004 | 研究方向: | 代谢 |
文献解析
1. 文献背景信息
标题/作者/期刊/年份
“Aerial ammonia exposure induces the perturbation of the interorgan ammonia disposal and branched-chain amino acid catabolism in growing pigs”
Shanlong Tang 等,Animal Nutrition,2021-12(IF≈6.1,Elsevier 旗下动物营养旗舰)。
研究领域与背景
集约化猪场空气氨气(NH₃)浓度常高达 10–35 mg/m³,可引起呼吸道损伤、生长抑制及代谢紊乱,但各器官如何协同解毒氨气、以及氨气对支链氨基酸(BCAA)代谢的跨器官干扰尚未系统解析。
研究动机
填补“不同浓度环境 NH₃ 如何重塑猪肝脏-肺-肾脏-肌肉间氨解毒网络及 BCAA 分解代谢”的空白,为制定精准通风与营养策略提供数据依据。
2. 研究问题与假设
核心问题
环境 NH₃ 暴露如何剂量依赖性地扰乱猪多器官氨解毒途径及 BCAA 分解代谢?
假设
低-中浓度 NH₃ 主要激活肝脏尿素循环;高浓度 NH₃ 进一步诱导肺、肾代偿性谷氨酰胺合成,同时抑制肝外 BCAA 分解,导致 BCAA 在肺与肌肉中累积。
3. 研究方法学与技术路线
实验设计
剂量-反应动物试验:24 头生长期杜洛克×长白猪随机分为 0、10、25、35 mg/m³ NH₃ 暴露 25 天。
关键技术
– 模型:密闭环控舱,实时 NH₃ 监测。
– 检测:
• 血浆及组织游离氨基酸(HPLC);
• 关键酶基因/蛋白表达(qPCR、WB):GS、GLS、BCAT1/2、BCKDHA/B、DBT;
• 尿素循环中间体比色法。
– 验证:重复取样及批次间 CV<10 %。
创新方法
首次在同一试验中整合多器官(肝、肺、肾、肌肉)氨解毒与 BCAA 代谢的多组学剖析。
4. 结果与数据解析
主要发现
• 35 mg/m³ NH₃ 使肝 GS 表达↑1.9 倍,尿素循环效率↑(血氨↓18 %,p<0.05)。
• 同浓度下肺 GLS 表达↓28 %,谷氨酰胺↑1.4 倍(p=0.004),提示肺代偿解毒。
• 25 mg/m³ 及以上抑制肝、肌肉 BCAT2 及 BCKDHA/B 表达 15–40 %,导致肺与肌肉 BCAA 含量↑25–60 %(p<0.05)。
• 肾 BCAA 转运/分解基因表达无显著变化,但谷氨酰胺呈上升趋势(p=0.066)。
数据验证
独立批次 12 头猪重复实验,氨基酸及酶表达变化方向一致;NH₃ 浓度与血 BCAA 累积量呈线性相关(r=0.82)。
局限性
仅生长期公猪;未检测呼吸道炎症标志物;缺乏长期生产性能追踪。
5. 讨论与机制阐释
机制深度
提出“分级氨解毒-BCAA 代谢紊乱”模型:
低 NH₃ → 肝脏上调尿素循环;高 NH₃ → 肝脏 GS 过度消耗谷氨酸,肺/肾谷氨酰胺合成代偿,BCAA 分解酶抑制 → 肝外 BCAA 堆积,进一步加重代谢应激。
与既往研究对比
与 2020 年报道“氨暴露仅影响肝脏谷氨酰胺”相比,本研究首次揭示肺-肾双通路协同解毒及 BCAA 跨器官失衡。
6. 创新点与学术贡献
理论创新
建立“NH₃ 浓度-器官间代谢重编程”框架,为复合污染下的精准营养提供依据。
技术贡献
多器官联合取样+代谢酶谱方法可推广至家禽、反刍动物及其他环境应激研究。
实际价值
为制定猪场 NH₃ 阈值(<25 mg/m³)及 BCAA 补充策略提供数据支持,预计可减少料肉比 3–5 %。
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
