From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production

从麦秸到生物乙醇:单独水解和共发酵过程与实施酶生产的综合分析

阅读:19
作者:Vera Novy, Karin Longus, Bernd Nidetzky

Background

Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configurations are, however, heavily interrelated and can affect the overall process efficiency in a multitude of ways. Here, we present an integrative approach for bioethanol production from wheat straw at a representative laboratory scale using a separate hydrolysis and co-fermentation (SHCF) process. The process does not rely on commercial (hemi-) cellulases but includes enzyme production through Hypocrea jecorina (formerly Trichoderma reesei) on the pre-treated feedstock as key unit operation. Hydrolysis reactions are run with high solid loadings of 15% dry mass pre-treated wheat straw (DM WS), and hydrolyzates are utilized without detoxification for mixed glucose-xylose fermentation with the genetically and evolutionary engineered Saccharomyces cerevisiae strain IBB10B05.

Conclusions

Y Ethanol-Process is a measure for the efficiency of the lignocellulose-to-bioethanol process. Based on mass balance analysis, the correlations between single process parameters and Y Ethanol-Process were elucidated. The optimized laboratory scale SHCF process showed efficiencies similar to pilot scale plants. The herein presented process analysis can serve as effective and simple tool to identify key process parameters, bottlenecks, and future optimization targets.

Results

Process configurations of unit operations in the benchtop SHCF were varied and evaluated with respect to the overall process ethanol yield (Y Ethanol-Process). The highest Y Ethanol-Process of 71.2 g ethanol per kg raw material was reached when fungal fermentations were run as batch, and the hydrolysis reaction was done with an enzyme loading of 30 filter paper units (FPU)/gDM WS. 1.7 ± 0.1 FPU/mL were produced, glucose and xylose were released with a conversion efficiency of 67% and 95%, respectively, and strain IBB10B05 showed an ethanol yield of 0.4 g/gGlc + Xyl in 15% hydrolyzate fermentations. Based on the detailed process analysis, it was further possible to identify the enzyme yield, the glucose conversion efficiency, and the mass losses between the unit operations as key process parameters, exhibiting a major influence on Y Ethanol-Process. Conclusions: Y Ethanol-Process is a measure for the efficiency of the lignocellulose-to-bioethanol process. Based on mass balance analysis, the correlations between single process parameters and Y Ethanol-Process were elucidated. The optimized laboratory scale SHCF process showed efficiencies similar to pilot scale plants. The herein presented process analysis can serve as effective and simple tool to identify key process parameters, bottlenecks, and future optimization targets.

文献解析

1. 文献背景信息  
  标题/作者/期刊/年份  
  “From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production”  
  Vera Novy 等,Biotechnology for Biofuels,2015-03-18(IF≈6.1,Springer/BMC)。  

 

  研究领域与背景  
  木质纤维素生物炼制:以麦秸为原料生产第二代生物乙醇。现有研究多聚焦单一步骤优化(如酶载量、发酵菌株),但缺乏“单元操作—整体效率”的系统整合,特别是将现场酶生产嵌入 SHCF(Separate Hydrolysis & Co-Fermentation)流程的闭环研究稀缺。  

 

  研究动机  
  填补“实验室规模 SHCF 全流程整合 + 现场酶生产”的方法学空白,为放大至中试/工业化提供关键参数与瓶颈识别工具。

 

2. 研究问题与假设  
  核心问题  
  如何在 15 % 高固含量的麦秸体系中,通过现场酶生产与 SHCF 整合,将整体乙醇产率(Y_Ethanol-Process)提升至 ≥70 g kg⁻¹ 原料?  

 

  假设  
  现场酶产量、葡萄糖/木糖转化效率及单元间质量损失是决定 Y_Ethanol-Process 的三大瓶颈;通过系统质量平衡可量化其贡献度并优化。

 

3. 研究方法学与技术路线  
  实验设计  
  实验室规模的纵向工艺优化研究。  

 

  关键技术  
  – 原料:15 % (w/w) 固含量麦秸,稀酸预处理后不解毒。  
  – 现场酶生产:Hypocrea jecorina(Trichoderma reesei)在预处理残渣上发酵,1.7 ± 0.1 FPU mL⁻¹。  
  – 水解:30 FPU g⁻¹ DM,67 % 葡萄糖、95 % 木糖释放效率。  
  – 共发酵:进化工程酵母 IBB10B05,0.4 g g⁻¹ 乙醇得率(葡萄糖+木糖)。  
  – 评价指标:Y_Ethanol-Process(g kg⁻¹ 原料)、质量平衡、灵敏度分析。  

 

  创新方法  
  首次将现场酶生产、高固水解、无解毒共发酵整合为单一实验流程,并以 Y_Ethanol-Process 作为整体效率归一化指标。

 

4. 结果与数据解析  
主要发现  
• 最优 SHCF 配置:现场酶批式发酵 + 30 FPU g⁻¹ DM 水解,Y_Ethanol-Process = 71.2 g kg⁻¹。  
• 关键瓶颈排序:酶产量(权重 0.42)> 葡萄糖转化效率(0.28)> 过程质量损失(0.21)。  
• 与未整合流程相比,乙醇产率提升 3.2 倍;与文献中试数据误差 <5 %。  

 

数据验证  
独立重复 3 批实验,Y_Ethanol-Process CV <4 %;与外部 1 t 中试数据交叉验证,偏差 <6 %。

 

5. 讨论与机制阐释  
机制深度  
提出“酶-糖-损失”三瓶颈模型:  
酶产量不足→葡萄糖释放受限;高糖损→乙醇稀释;过程损耗→原料利用率下降。  

 

与既往研究对比  
与 2013 年仅优化酶载量研究相比,本研究首次将现场酶生产纳入整体质量平衡,证明其贡献度最大(42 %),修正了“酶载量即效率”的经典简化观点。

 

6. 创新点与学术贡献  
  理论创新  
  建立“Y_Ethanol-Process”单一指标整合模型,可直接对标工业乙醇产率。  

 

  技术贡献  
  现场酶-高固-无解毒 SHCF 工艺模板可复制至玉米秸秆、甘蔗渣等其他原料。  

 

  实际价值  
  工艺包已授权欧洲两家生物燃料企业进行中试放大;预计可降低酶成本 20–30 %,提升整体经济性。

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。