Mechanical loading is required for bone health and results in skeletal adaptation to optimize strength. Local nerve axons, particularly within the periosteum, may respond to load-induced biomechanical and biochemical cues. However, their role in the bone anabolic response remains controversial. We hypothesized that spatial alignment of periosteal nerves with sites of load-induced bone formation would clarify this relationship. To achieve this, we developed RadialQuant, a custom tool for spatial histomorphometry. Tibiae of control and neurectomized (sciatic/femoral nerve cut) pan-neuronal Baf53b-tdTomato reporter mice were loaded for 5 days. Bone formation and periosteal nerve axon density were then quantified simultaneously in non-decalcified sections of the mid-diaphysis using RadialQuant. In control animals, anabolic loading induced maximal periosteal bone formation at the site of peak compression, as has been reported previously. By contrast, loading did not significantly change overall periosteal nerve density. Neurectomy depleted ~90% of all periosteal axons, with near-total depletion on load-responsive surfaces. Neurectomy alone also caused de novo bone formation on the lateral aspect of the mid-diaphysis. However, neurectomy did not inhibit load-induced increases in periosteal bone area, mineralizing surface, or bone formation rate. Rather, neurectomy spatially redistributed load-induced bone formation toward the lateral tibial surface with a reduction in periosteal bone formation at the posterolateral apex (-63%) and enhancement at the lateral surface (+1360%). Altogether, this contributed to comparable load-induced changes in cortical bone area fraction. Our results show that local skeletal innervation modulates but is not required for skeletal adaptation to applied load in our model. This supports the continued use of loading and weight-bearing exercise as an effective strategy to increase bone mass, even in settings of peripheral nerve damage or dysfunction.
Spatial histomorphometry reveals that local peripheral nerves modulate but are not required for skeletal adaptation to applied load in mice.
空间组织形态计量学表明,局部周围神经可以调节小鼠骨骼对施加负荷的适应,但并非其必需
阅读:9
作者:Beeve Alec T, Hassan Mohamed G, Li Anna, Migotsky Nicole, Silva Matthew J, Scheller Erica L
| 期刊: | JBMR Plus | 影响因子: | 2.400 |
| 时间: | 2025 | 起止号: | 2025 Jan 12; 9(3):ziaf006 |
| doi: | 10.1093/jbmrpl/ziaf006 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
