Early endosomal abnormalities and cholinergic neuron degeneration in amyloid-β protein precursor transgenic mice.

阅读:3
作者:Choi Jennifer H K, Kaur Gurjinder, Mazzella Matthew J, Morales-Corraliza Jose, Levy Efrat, Mathews Paul M
Early endosomal changes, a prominent pathology in neurons early in Alzheimer's disease, also occur in neurons and peripheral tissues in Down syndrome. While in Down syndrome models increased amyloid-β protein precursor (AβPP) expression is known to be a necessary contributor on the trisomic background to this early endosomal pathology, increased AβPP alone has yet to be shown to be sufficient to drive early endosomal alterations in neurons. Comparing two AβPP transgenic mouse models, one that contains the AβPP Swedish K670N/M671L double mutation at the β-cleavage site (APP23) and one that has the AβPP London V717I mutation near the γ-cleavage site (APPLd2), we show significantly altered early endosome morphology in fronto-parietal neurons as well as enlargement of early endosomes in basal forebrain cholinergic neurons of the medial septal nucleus in the APP23 model, which has the higher levels of AβPP β-C-terminal fragment (βCTF) accumulation. Early endosomal changes correlate with a marked loss of the cholinergic population, which is consistent with the known dependence of the large projection cholinergic cells on endosome-mediated retrograde neurotrophic transport. Our findings support the idea that increased expression of AβPP and AβPP metabolites in neurons is sufficient to drive early endosomal abnormalities in vivo, and that disruption of the endocytic system is likely to contribute to basal forebrain cholinergic vulnerability.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。