Conductive Hydrogel Inspires Neutrophil Extracellular Traps to Combat Bacterial Infections in Wounds.

导电水凝胶激发中性粒细胞胞外陷阱,对抗伤口细菌感染

阅读:4
作者:OuYang Lizhi, Lin Ze, He Xi, Sun Jiaqi, Liao Jiewen, Liao Yuheng, Xie Xudong, Hu Weixian, Zeng Ruiyin, Tao Ranyang, Liu Mengfei, Sun Yun, Mi Bobin, Liu Guohui
Thetreatment of infected wounds is currently a major challenge in clinical medicine, and enhancing antimicrobial and angiogenic capacity is one of the most common strategies. However, the current treatment makes it difficult to balance the antimicrobial effect in the early stage and the angiogenic effect in the later stages of wound healing, leading to an increased rate of poor prognosis. Here, we present a nanoconductive hydrogel EF@S-HGM, consisting of HGM with ECGS, FMLP, and SWCNT. The host-guest supramolecular macromolecule (HGM) hydrogel is biocompatible and can be injected in situ in the wound. The endothelial cell growth factor (ECGS) accelerates vascular remodeling and repairs wounds by promoting the proliferation of endothelial cells. N-Formyl-Met-Leu-Phe (FMLP) recruits neutrophils and increases the antimicrobial capacity. Single-walled carbon nanotubes (SWCNT) make the hydrogel conductive, enabling the hydrogel to utilize the endogenous electric field in the wound to recruit multiple kinds of cells. In addition, we found that the EF@S-HGM hydrogel activates the glucocorticoid receptor senescence pathway and promotes the formation of NET, which enhances the antimicrobial effect. As tissue-engineered skin, the conductive hydrogel EF@S-HGM is a promising material for regenerative medicine that may provide a potential option for the treatment and care of infected wounds and significantly improve patient outcomes and prognosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。