Disulfidptosis is a newly discovered type of regulated cell death triggered by disulfide bond accumulation and NADPH (nicotinamide adenine dinucleotide phosphate) depletion due to glucose deprivation. However, the regulatory mechanisms involving additional cellular circuits remain unclear. Excessive disulfide bond accumulation can impair endoplasmic reticulum (ER) homeostasis and activate the ER stress response. In this study, we found that SLC7A11-mediated disulfidptosis upon glucose deprivation is accompanied by ER stress induction. Pharmacological inhibition of SLC7A11-mediated cystine uptake or cystine withdrawal not only blocks disulfidptosis under glucose starvation but also suppresses the ER stress response, indicating a close link between these processes. Moreover, inhibitors targeting the ER stress response promote disulfidptosis, while ER stress inducers suppress glucose starvation-induced disulfidptosis in SLC7A11-high-expressing cells, suggesting a protective role for ER stress during disulfidptosis. Similar effects are observed in cells treated with glucose transporter inhibitors (GLUTi). Finally, combined treatment with ER stress inhibitors and GLUTi significantly suppresses tumor growth both in vitro and in vivo by inducing disulfide stress and subsequent disulfidptosis. In summary, these findings reveal a novel role for ER stress in regulating disulfidptosis and provide theoretical insights into the potential application of GLUTi and ER stress inhibitors in cancer therapy.
Inhibition of Endoplasmic Reticulum Stress Cooperates with SLC7A11 to Promote Disulfidptosis and Suppress Tumor Growth upon Glucose Limitation.
抑制内质网应激与 SLC7A11 协同作用,促进二硫键凋亡,并在葡萄糖限制时抑制肿瘤生长
阅读:6
作者:Wang Jin, Chen Jing, Fan Kexin, Wang Minglin, Gao Min, Ren Yakun, Wu Shaobo, He Qian, Tu Kangsheng, Xu Qiuran, Zhang Yilei
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Feb;12(7):e2408789 |
| doi: | 10.1002/advs.202408789 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
