Antioxidant, Osteogenic, and Neuroprotective Effects of Homotaurine in Aging and Parkinson's Disease Models.

高牛磺酸在衰老和帕金森病模型中的抗氧化、成骨和神经保护作用

阅读:8
作者:Minoia Arianna, Piritore Francesca Cristiana, Bolognin Silvia, Pessoa João, Bernardes de Jesus Bruno, Tiso Natascia, Romanelli Maria Grazia, Schwamborn Jens Christian, Dalle Carbonare Luca, Valenti Maria Teresa
Aging is associated with the accumulation of cellular damage due to oxidative stress and chronic low-grade inflammation, collectively referred to as "inflammaging". This contributes to the functional decline in various tissues, including the brain and skeletal system, which closely interplay. Mesenchymal stem cells (MSCs), known for their regenerative potential and ability to modulate inflammation, offer a promising therapeutic approach to counteract aging-related declines. In this study, we investigated the effects of homotaurine (a small molecule with neuroprotective properties) on MSCs and its effects on osteogenesis. We found that homotaurine treatment significantly reduced reactive oxygen species (ROS) levels, improved MSC viability, and modulated key stress response pathways, including the sestrin 1 and p21 proteins. Furthermore, homotaurine promoted osteogenesis and angiogenesis in zebrafish models by enhancing the expression of critical osteogenesis-associated genes, such as those coding for β-catenin and Runt-related transcription factor 2 (Runx2), and increasing the levels of the kinase insert domain receptor-like angiogenesis marker in aged zebrafish. In Parkinson's disease models using patient-specific midbrain organoids with the leucine-rich repeat kinase 2 G2019S mutation, homotaurine treatment enhanced β-catenin expression and reduced ROS levels, highlighting its potential to counteract the oxidative stress and dysfunctional signaling pathways associated with neurodegeneration. Our findings suggest that homotaurine not only offers neuroprotective benefits but also holds promise as a dual-target therapeutic strategy for enhancing both neuronal and bone homeostasis in aging and neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。