Cold Atmospheric Plasma Jet Promotes Wound Healing Through CK2-Coordinated PI3K/AKT and MAPK Signaling Pathways.

冷大气等离子体射流通过 CK2 协调的 PI3K/AKT 和 MAPK 信号通路促进伤口愈合

阅读:10
作者:Wu Pei-Shan, Wong Tzu-Hsuan, Hou Chun-Wei, Chu Teng-Ping, Lee Jyh-Wei, Lou Bih-Show, Lin Miao-Hsia
The promising role of cold atmospheric plasma jet (CAPJ) treatment in promoting wound healing has been widely documented in therapeutic implications. However, the fact that not all subjects respond equally to CAPJ necessitates the investigation of the underlying cellular mechanisms, which have been rarely understood so far. Given that wound healing is a complex and prolonged process, post plasma-activated medium (PAM) treated keratinocytes were collected at two time points, 2 h (receiving) and 24 h (recovery), for (phospho)proteomic analysis to systematically dissect the molecular basis of CAPJ-promoted wound healing. The receiving (phospho)proteomics datasets, referred to the time point of 2 h, revealed an apparent increase in the phosphorylation of CK2 and its-mediated PI3K/AKT and MAPK signaling pathways, accompanied by a prompted downstream physiological response of cell migration. Additionally, incorporating the network analysis of predicted kinases and their direct interactors, we reiterated that CAPJ influenced cell growth and migration, thereby paving the way for its role in subsequent wound healing processes. Further determining the proteome profiles at recovery phase, which is the time point of 24 h, displayed a totally different view from the receiving proteome which had almost no change. The upregulation of ROBOs/SLITs expression and vesicle trafficking and fusion-related proteins, along with the abundant presence of 14-3-3 family proteins, indicated that the persistent effect of PAM on the wound healing process could potentially promote keratinocyte-fibroblast cross talk and stimulate extracellular matrix synthesis upon epithelialization. Consistent with proteome patterns, CAPJ-treated wound tissues indeed showed a denser and well-organized extracellular matrix architecture, implying hastened epithelialization during wound healing. Collectively, we delineated the molecular basis of CAPJ-accelerated wound healing at early and late responses, providing valuable insights for treatment selection and the development of therapeutic strategies to achieve better outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。