A two-gene random forest model to diagnose osteoarthritis based on RNA-binding protein-related genes in knee cartilage tissue.

基于膝关节软骨组织中RNA结合蛋白相关基因的双基因随机森林模型诊断骨关节炎

阅读:9
作者:Yin Wenhua, Lei Ying, Yang Xuan, Zou Jiawei
Osteoarthritis (OA) is one of the most common diseases in the orthopedic clinic, characterized by progressive cartilage degradation. RNA-binding proteins (RBPs) are capable of binding to RNAs at transcription and translation levels, playing an important role in the pathogenesis of OA. This study aims to investigate the diagnosis values of RBP-related genes in OA. The RBPs were collected from previous studies, and the GSE114007 dataset (control = 18, OA = 20) was downloaded from the Gene Expression Omnibus (GEO) as the training cohort. Through various bioinformatical and machine learning methods, including genomic difference detection, protein-protein interaction network analyses, Lasso regression, univariate logistic regression, Boruta algorithm, and SVM-RFE, RNMT and RBM24 were identified and then included into the random forest (RF) diagnosis model. GSE117999 dataset (control = 10, OA = 10) and clinical samples collected from local hospital (control = 10, OA = 11) were used for external validation. The RF model was a promising tool to diagnose OA in the training dataset (area under curve [AUC] = 1.000, 95% confidence interval [CI] = 1.000-1.000), the GSE117999 cohort (AUC = 0.900, 95% CI = 0.769-1.000), and local samples (AUC = 0.759, 95% CI = 0.568-0.951). Besides, qPCR and Western Blotting experiments showed that RNMT (P < 0.05) and RBM24 (P < 0.01) were both down-regulated in CHON-001 cells with IL-1β treatment. In all, an RF model to diagnose OA based on RNMT and RBM24 in cartilage tissue was constructed, providing a promising clinical tool and possible cut-in points in molecular mechanism clarification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。