Mesenchymal stem cell (MSC)-based therapy regenerates damaged structures of the respiratory system and restores lung function, thus providing a promising therapeutic approach for chronic obstructive pulmonary disease. Understanding the communication between injured alveolar cells and MSCs can improve the efficiency of MSC-based therapies. The present study analyzed the untargeted metabolomics of the supernatant of AEC-II injury induced by cigarette smoke extract and identified 205 differential metabolites. Phenotypic assays indicated that phenylacetylglutamine (PAG) significantly promoted the migration and mitochondrial function of bone marrow MSCs (BMSCs). Whole-transcriptome sequencing (WT-seq) was used to analyze the long noncoding RNA (lncRNA) and mRNA expression profiles of BMSCs treated with PAG. The upregulated lncNRA NONRATT006276.2 (NRT6276.2) and its trans-regulated gene, microtubule-associated protein tau (Mapt), were identified based on the lncRNA-mRNA co-expression network and bioinformatics analysis. The knockdown of NRT6276.2 or Mapt inhibited the positive effects of PAG on BMSCs. Furthermore, Mapt overexpression reversed the phenotype of BMSCs inhibited by silencing NRT6276.2. In conclusion, PAG enhanced the migration and mitochondrial function of BMSCs by regulating the NRT6276.2/Mapt pathway. This study clarified the positive effects of PAG produced by injured lung cells on transplanted MSCs, providing a potential new strategy to enhance the efficiency of MSC-based therapies.
Phenylacetylglutamine produced from injury lung alveolar epithelial cells promotes the function of BMSCs by regulating NONRATT006276.2/Mapt pathway.
损伤肺泡上皮细胞产生的苯乙酰谷氨酰胺通过调节 NONRATT006276.2/Mapt 通路促进 BMSC 的功能
阅读:7
作者:Yang Tianyun, Peng Juan, Ren Rongrong, Song Lin
| 期刊: | Respiratory Research | 影响因子: | 5.000 |
| 时间: | 2025 | 起止号: | 2025 May 24; 26(1):196 |
| doi: | 10.1186/s12931-025-03261-2 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
