Advanced prostate cancer (PCa) frequently develops resistance to androgen deprivation therapy through various mechanisms including lineage plasticity. Slow-cycling cells (SCCs) have emerged as key players in adaptive responses to therapy, yet their role in PCa remains unclear. Through in silico analysis of single-cell RNA sequencing (scRNA-seq) data, we discovered that SCCs are enriched during pivotal stages of PCa progression, including the transition from androgen-dependent to castration-resistant states and the emergence of neuroendocrine PCa (NEPC). Using a tetracycline-inducible H2BeGFP reporter system, we confirmed SCC enrichment following androgen deprivation in both in vitro and in vivo models. Furthermore, we identified TET2 as a key regulator of SCCs, with its expression upregulated by androgen deprivation and positively correlated with SCC signature scores in PCa. Genome-wide 5-hydroxymethylcytosine (5hmC) profiling revealed increased hydroxymethylation after androgen deprivation, while TET2 knockdown reduced 5hmC levels at specific loci. Functional studies demonstrated that TET2 governs SCC maintenance, cell cycle progression, and DNA damage repair. Targeting TET2, either alone or in combination with an ATM inhibitor, significantly suppressed tumor growth, highlighting TET2 as a promising therapeutic target. Our study provides the first single-nucleotide resolution map of 5hmC dynamics in PCa, identifies a cell state driving epigenetic rewiring, and underscores the transformative potential of novel therapeutic strategies for advanced PCa.
Androgen Deprivation-Induced TET2 Activation Fuels Prostate Cancer Progression via Epigenetic Priming and Slow-Cycling Cancer Cells.
雄激素剥夺诱导的 TET2 激活通过表观遗传启动和慢周期癌细胞促进前列腺癌进展
阅读:12
作者:Li Lin, Cheng Siyuan, Xu Yaru, Deng Su, Mu Ping, Yu Xiuping
| 期刊: | bioRxiv | 影响因子: | |
| 时间: | 2025 | 起止号: | 2025 Mar 29 |
| doi: | 10.1101/2025.03.26.645495 | 研究方向: | 细胞生物学、表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
