CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), which was first discovered as a central repressor of photomorphogenesis in Arabidopsis, destabilizes proteins by ubiquitination in both plants and animals. However, it is unclear whether and how Arabidopsis COP1 mediates non-proteolytic ubiquitination to regulate photomorphogenesis. Here, we show that COP1-mediated lysine 63 (K63)-linked polyubiquitination inhibits the enzyme activity of GRETCHEN HAGEN 3.5 (GH3.5), a synthetase that conjugates amino acids to indole-3-acetic acid (IAA), thereby promoting hypocotyl elongation in the dark. We show that COP1 physically interacts with and genetically acts through GH3.5 to promote hypocotyl elongation. COP1 does not affect GH3.5 protein stability; however, it suppresses GH3.5 activity through K63-linked ubiquitination in the dark, inhibiting the endogenous conversion of IAA to IAA-amino acid conjugates. Further, light regulates IAA metabolism by suppressing the inhibitory effect of COP1 on the function of GH3.5 and its homologs. Our results shed light on the non-proteolytic role of COP1-mediated ubiquitination and the mechanism by which light regulates auxin metabolism to modulate hypocotyl elongation.
Inactivation of GH3.5 by COP1-mediated K63-linked ubiquitination promotes seedling hypocotyl elongation.
COP1介导的K63连接泛素化使GH3.5失活,从而促进幼苗下胚轴伸长
阅读:9
作者:Liu Yongting, Xie Yinpeng, Xu Dongqing, Deng Xing Wang, Li Jian
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 14; 16(1):3541 |
| doi: | 10.1038/s41467-025-58767-6 | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
