Myosin-binding protein C forms C-links and stabilizes OFF states of myosin

肌球蛋白结合蛋白 C 形成 C 连接并稳定肌球蛋白的 OFF 状态

阅读:4
作者:Anthony L Hessel, Nichlas M Engels, Michel Kuehn, Devin Nissen, Rachel L Sadler, Weikang Ma, Thomas C Irving, Wolfgang A Linke, Samantha P Harris

Abstract

Contraction force in muscle is produced by the interaction of myosin motors in the thick filaments and actin in the thin filaments and is fine-tuned by other proteins such as myosin-binding protein C (MyBP-C). One form of control is through the regulation of myosin heads between an ON and OFF state in passive sarcomeres, which leads to their ability or inability to interact with the thin filaments during contraction, respectively. MyBP-C is a flexible and long protein that is tightly bound to the thick filament at its C-terminal end but may be loosely bound at its middle- and N-terminal end (MyBP-CC1C7). Under considerable debate is whether the MyBP-CC1C7 domains directly regulate myosin head ON/OFF states, and/or link thin filaments ("C-links"). Here, we used a combination of mechanics and small-angle X-ray diffraction to study the immediate and selective removal of the MyBP-CC1C7 domains of fast MyBP-C in permeabilized skeletal muscle. After cleavage, the thin filaments were significantly shorter, a result consistent with direct interactions of MyBP-C with thin filaments thus confirming C-links. Ca2+ sensitivity was reduced at shorter sarcomere lengths, and crossbridge kinetics were increased across sarcomere lengths at submaximal activation levels, demonstrating a role in crossbridge kinetics. Structural signatures of the thick filaments suggest that cleavage also shifted myosin heads towards the ON state - a marker that typically indicates increased Ca2+ sensitivity but that may account for increased crossbridge kinetics at submaximal Ca2+ and/or a change in the force transmission pathway. Taken together, we conclude that MyBP-CC1C7 domains play an important role in contractile performance which helps explain why mutations in these domains often lead to debilitating diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。