Mechanisms of Cisplatin-Induced Acute Kidney Injury: The Role of NRF2 in Mitochondrial Dysfunction and Metabolic Reprogramming.

顺铂诱导急性肾损伤的机制:NRF2 在线粒体功能障碍和代谢重编程中的作用

阅读:6
作者:Liu Jihan, Wang Yiming, Qiao Panshuang, Ying Yi, Lin Simei, Lu Feng, Gao Cai, Li Min, Yang Baoxue, Zhou Hong
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally injected with 20 mg/kg cisplatin to establish an AKI model. Serum creatinine, urea nitrogen, and tubular injury biomarkers (NGAL, KIM-1) progressively increased, indicating kidney dysfunction. Mitochondrial ATP levels significantly decreased, along with reduced mitochondrial fission and fusion, suggesting mitochondrial dysfunction. Increased oxidases and reduced antioxidants indicated redox imbalance, and metabolic reprogramming was observed, with lipid deposition, impaired fatty acid oxidation (FAO), and enhanced glycolysis in proximal tubular epithelial cells (PTECs). Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcriptional regulator of redox homeostasis and mitochondrial function. We found NRF2 levels increased early in AKI, followed by a decrease in vivo and in vitro, suggesting activation in the stress response. Nfe2l2 knockout mice showed aggravated kidney injury, characterized by worsened kidney function and histopathological damage. Mechanistically, Nfe2l2 knockout resulted in redox imbalance, reduced ATP synthesis, mitochondrial dysfunction and metabolic dysregulation. Furthermore, we activated NRF2 using dimethyl fumarate (DMF), observing a reduction in kidney damage and lipid deposition in mice. In conclusion, activating NRF2-dependent antioxidant pathways plays a crucial role in protecting against cisplatin-induced AKI. NRF2 may serve as a potential target for developing therapeutic strategies to prevent cisplatin nephrotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。