Angiogenesis is crucial for prolonging survival of the injured myocardium following myocardial infarction (MI). Long non-coding RNAs (lncRNAs), recognized as a novel class of regulatory RNAs, play significant roles in various biological processes. However, their role in cardiac angiogenesis is not well elucidated. This study aimed to identify angiogenic lncRNAs and investigate their roles and mechanisms following MI. In our study utilizing lncRNA sequencing within a mouse model of MI, systematic lncRNA profiling identified differentially expressed transcripts in the MI border zone at 7 days post-MI, with SNHG15 being notably upregulated in cardiac tissue and endothelial cells (ECs) of the peri-infarct area. Overexpression of SNHG15 in human coronary artery endothelial cells (HCAECs) led to an increase in kinase insert domain receptor (KDR) expression and enhanced angiogenic activity. Furthermore, adeno-associated virus 9 (AAV9)-mediated overexpression of SNHG15, under the control of an endothelial-specific promoter, resulted in improved cardiac function, reduced infarct size, and increased angiogenesis in the infarcted myocardium in vivo. However, after endothelial-specific knockdown of SNHG15, cardiac function in mice with MI deteriorated. Localization studies revealed that SNHG15 is primarily found in the cytoplasm of HCAECs and mechanistic investigations indicated that SNHG15 acts as a competing endogenous RNA for miR-665, thereby regulating KDR signaling and expression. And KDR overexpression rescues both MI exacerbation and EC dysfunction induced by SNHG15 silencing in MI hearts. Collectively, our study has uncovered lncRNA SNHG15 as a novel regulator of angiogenesis that enhances the endogenous repair mechanisms of ECs in response to pathophysiological remodeling post-MI. These findings position SNHG15 as a promising therapeutic target for inhibiting infarct expansion and promoting cardiac repair and regeneration following MI.
LncRNA SNHG15 promotes angiogenesis and improves cardiac repair after myocardial infarction through MiR-665-mediated KDR expression.
LncRNA SNHG15 通过 MiR-665 介导的 KDR 表达促进血管生成,改善心肌梗死后的心脏修复
阅读:11
作者:Liang Xiaoyun, Liu Shangyu, Liu Gang, Fan Qiankun, Ma Fangfang, Yin Yajuan, Li ZhaoMing, Wu Yuming, Zheng Mingqi
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 May 26; 82(1):211 |
| doi: | 10.1007/s00018-025-05737-2 | 研究方向: | 炎症/感染 |
| 疾病类型: | 心肌炎 | 信号通路: | Angiogenesis |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
